
www.manaraa.com

University of South Florida University of South Florida 

Scholar Commons Scholar Commons 

Graduate Theses and Dissertations Graduate School 

7-17-2009 

Evaluating Dissolved Oxygen Regimes Along a Gradient of Human Evaluating Dissolved Oxygen Regimes Along a Gradient of Human 

Disturbance for Lotic Systems in West-Central Florida Disturbance for Lotic Systems in West-Central Florida 

Daniel G. Hammond 
University of South Florida 

Follow this and additional works at: https://scholarcommons.usf.edu/etd 

 Part of the American Studies Commons 

Scholar Commons Citation Scholar Commons Citation 
Hammond, Daniel G., "Evaluating Dissolved Oxygen Regimes Along a Gradient of Human Disturbance for 
Lotic Systems in West-Central Florida" (2009). Graduate Theses and Dissertations. 
https://scholarcommons.usf.edu/etd/1999 

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been 
accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. 
For more information, please contact scholarcommons@usf.edu. 

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/etd
https://scholarcommons.usf.edu/grad
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1999&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F1999&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

Evaluating Dissolved Oxygen Regimes Along a Gradient of Human Disturbance for 

Lotic Systems in West-Central Florida 

 
 

by 
 
 
 

Daniel G. Hammond 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science 
Department of Geography 

College of Arts and Sciences 
University of South Florida 

 
 
 
 
 

Major Professor: Graham Tobin, Ph.D. 
Philip Reeder, Ph.D. 

Kamal Alsharif, Ph.D. 
 
 
 

Date of Approval: 
July 17, 2009 

 
 
 

Keywords: LDI, nutrients, diel variation, TMDL, SCI 
 

© Copyright 2009, Daniel G. Hammond 



www.manaraa.com

ACKNOWLEDGEMENTS 
 

 I would like to thank Dr. Graham Tobin for taking me on as a graduate student 

and providing input and direction to make this research possible.  I would also like to 

thank Dr. Philip Reeder and Dr. Kamal Alsharif for their support, comments, and ideas 

during this process.  Thank you to Dr. Douglas Durbin and Ms. Kristan Robbins of 

ENTRIX Inc. (fka Biological Research Associates) for providing ideas, comments, 

statistical support, and the flexibility necessary to complete this project.  In addition, I 

would like to thank Dr. Gary Payne of the Florida Department of Environmental 

Protection for allowing me to use data for this research effort.  Finally, I would like to 

thank my wife, Kimberly, for her unyielding support and motivation without which this 

project would never have been completed. 



www.manaraa.com

 

 i

 

 

TABLE OF CONTENTS 
 
LIST OF TABLES.............................................................................................................. ii 
 
LIST OF FIGURES ........................................................................................................... iii 
 
ABSTRACT....................................................................................................................... iv 
 
INTRODUCTION .............................................................................................................. 6 

Research Design...................................................................................................... 8 
 
LITERATURE REVIEW ................................................................................................. 13 
 
MATERIALS AND METHODS...................................................................................... 18 

Site Selection ........................................................................................................ 18 
Landscape Development Intensity Index (LDI) ................................................... 21 
Dissolved Oxygen, Nutrient, and Chlorophyll-a Data Acquisition...................... 23 
Stream Condition Index (SCI) .............................................................................. 26 
Data Analyses ....................................................................................................... 29 

 
DESCRIPTIVE RESULTS............................................................................................... 30 

Landscape Development Intensity Index (LDI) ................................................... 32 
Dissolved Oxygen................................................................................................. 33 
Nutrients and Chlorophyll-a ................................................................................. 37 
Stream Condition Index (SCI) .............................................................................. 39 

 
ANALYSIS AND DISCUSSION..................................................................................... 41 

Dissolved Oxygen, Nutrients, and Chlorophyll-a................................................. 41 
The Role of Stream Morphology .......................................................................... 50 
Biological Integrity of Streams............................................................................. 58 

 
POLICY IMPLICATIONS............................................................................................... 67 
 
CONCLUSIONS............................................................................................................... 74 
 
LITERATURE CITED ..................................................................................................... 82 
 
BIBLIOGRAPHY............................................................................................................. 88 
 
APPENDIX A: Landscape Development Intensity Index Raw Data ............................... 90 



www.manaraa.com

 

 ii

 

 

LIST OF TABLES 
 
Table 1. Station names and locations, west-central Florida.........................................20 
Table 2. Equations for calculating SCI metrics for peninsular Florida (range 

from zero to ten).............................................................................................28 
Table 3. Aquatic life use categories for SCI scores, peninsular Florida. .....................29 
Table 4. Quarterly data collection periods, west-central Florida, 2005 – 2006. ..........31 
Table 5. Landscape Development Intensity Index scores, calculated from 2005 

GIS land use coverages for west-central Florida. ..........................................32 
Table 6. Overall quarterly range and mean dissolved oxygen concentrations, 

west-central Florida, 2005 – 2006. ................................................................34 
Table 7. Mean dissolved oxygen saturation percent, mean oxygen deficit, and 

percentage of dissolved oxygen values below Florida’s water quality 
standard (5.0 mg/L), west-central Florida, 2005 – 2006................................36 

Table 8. Mean and range values for nutrients and chlorophyll-a, west-central 
Florida, 2005 – 2006. .....................................................................................38 

Table 9. Stream Condition Index scores and aquatic life use categories, west-
central Florida, 2005 – 2006. .........................................................................40 

Table 10. Spearman correlations for dissolved oxygen, LDI, nutrients, and 
chlorophyll-a concentrations, west-central Florida, 2005 – 2006. ................41 

Table 11. Breakdown of LDI scores for channelized and non-channelized 
streams, west-central Florida, 2005 – 2006. ..................................................52 

Table 12. Spearman rank order correlations for dissolved oxygen, LDI, 
nutrients, and chlorophyll-a concentrations in non-channelized and 
channelized streams, west-central Florida, 2005 – 2006. ..............................54 

Table 13. Overall, channelized and non-channelized Spearman rank order 
correlations for dissolved oxygen, LDI, and biological integrity, 
west-central Florida, 2005 – 2006. ................................................................60 

 



www.manaraa.com

 

 iii

 

 

LIST OF FIGURES 
 
Figure 1. Basic flow diagram indicating general knowledge on how intensity of 

human land uses affect stream ecosystems.. ..................................................10 
Figure 2. Monitoring station locations ..........................................................................19 
Figure 3. Typical sonde deployment structure and positioning in stream.....................24 
Figure 4. Mean dissolved oxygen range (DOR) for each deployment and LDI 

score over all quarters. ...................................................................................43 
Figure 5. Mean dissolved oxygen (DOM) values for each deployment and LDI 

score over all quarters. ...................................................................................45 
Figure 6. Mean dissolved oxygen (DOM) and nitrate+nitrite values for each 

deployment over all quarters..........................................................................48 
Figure 7. Mean dissolved oxygen concentrations (DOM) and LDI scores for 

non-channelized and channelized streams over all quarters in west-
central Florida. ...............................................................................................53 

Figure 8. LDI and overall SCI scores calculated from summer and winter data 
collection efforts. ...........................................................................................62 

Figure 9. Mean dissolved oxygen (DOM) and SCI scores calculated from 
summer and winter data collection efforts.....................................................63 

Figure 10. Dissolved oxygen deficit (DOD) calculated at the minimum oxygen 
concentration for each day of the 4-day deployment, during summer 
and winter data collection efforts...................................................................65 

Figure 11. Percent of dissolved oxygen values collected from all stations, over 
all quarters observed above the 5.0 mg/L state water quality standard 
by hour of the day. .........................................................................................71 

Figure 12. Percent of dissolved oxygen values collected from the reference 
stations, over all quarters observed above the 5.0 mg/L state water 
quality standard by hour of the day................................................................73 

 

 



www.manaraa.com

 

 iv

 

 

 
EVALUATING DISSOLVED OXYGEN REGIMES ALONG A GRADIENT OF 
HUMAN DISTURBANCE FOR LOTIC SYSTEMS IN WEST-CENTRAL 
FLORIDA 
 
 
Daniel G. Hammond 
 

ABSTRACT 
 

 Land uses dominated by human activity can have a significant effect on 

ecological processes.  In Florida, oxygen depletion is the most common impairment in 

lake, stream, and coastal water bodies.  The continual growth and development in 

Florida, along with a conversion to more human intense land uses warrants study and 

discussion on impacts to dissolved oxygen regimes along a gradient of human 

disturbance.  This research study is designed to identify observable trends in dissolved 

oxygen regimes along a gradient of increasing human intensity.   

Twenty-six stations in the Tampa Bay area were selected to represent lotic 

systems in west-central Florida.  Data was collected quarterly, during four-day 

deployments, using a deployable data sonde.  Grab samples for nutrients and chlorophyll-

a provided antecedent data to explain observed trends.  Physical components of streams, 

such as channelization were also taken into account.  Biological integrity of streams was 

assessed to identify if altered dissolved oxygen regimes as a result of human land use 

significantly affect the health of the systems.  Analysis included the use of Spearman 

rank order correlations to identify patterns.   
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 Dissolved oxygen regimes were correlated with the Landscape Development 

Intensity Index (LDI).  Nutrients, primary productivity, and physical alteration to the 

streambed play a significant role in understanding how land use affects dissolved oxygen 

regimes.  Results indicate the intensity of human land use has a significant effect on 

dissolved oxygen regimes and has significant policy implications for Florida’s Total 

Maximum Daily Load (TMDL) program.  Diel variation in oxygen measurements may be 

a more appropriate indicator of impairment and stream biological integrity. 
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INTRODUCTION 
 

Land uses dominated by human activity are known to have significant effects on 

natural communities and ecological processes within those communities (Brown and 

Vivas 2005).  This relationship has been well documented in the literature (Brown and 

Vivas 2005, Allan et al. 1997, Beaulac & Reckhow 1982, Crosbie & Chow-Fraser 1999, 

Tsegaye et al. 2006, Ehrenfeld 1983, Richards et al. 1996, and Roth et al. 1996, among 

others).  Similar results are presented from studies conducted in a variety of landscapes 

showing degradation in ecological community structure with intense human dominated 

land uses. 

In the United States, non-point source runoff from intense human land use is the 

main source of lake, stream, and coastal water degradation (Tsegaye et al. 2006, 

Carpenter et al. 1998, USEPA 1996 & 2001).  According to the U.S. Environmental 

Protection Agency (1996 & 2001) approximately 35 percent of river reaches in the 

United States violate water quality standards as a result of temporal land use/land cover 

changes.  In Florida, this same pattern is illustrated as a result of continuing urban sprawl 

and intense agriculture activities that increase the human influence on Florida’s natural 

communities.  Water resources in Florida are diverse, supporting a wide array of plant 

and animal habitats as well as human uses such as food crops, industry, tourism, and 

recreation (FDEP 2008). 
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The Florida Department of Environmental Protection (FDEP) is charged with 

assessing Florida’s aquatic resources to determine which waterbodies are impaired and in 

need of restoration.  According to the FDEP (2008) Integrated Water Quality Assessment 

for Florida, there are currently 931 river and stream segments listed as impaired for some 

constituent throughout Florida.  The most common impairment observed is oxygen 

depletion (248 waterbody segments), totaling over 2,000 miles of impaired rivers and 

streams out of the approximate 20,000 miles accessed (FDEP 2008).  Dissolved oxygen 

(DO) is the main focus of this research project as it is one of the main parameters of 

concern in Florida and is widely recognized as a general indicator of aquatic health.   

Adequate dissolved oxygen concentrations are an essential part of any healthy 

aquatic system.  Many processes can affect the amount of DO in a system at any given 

time.  For example, respiration, metabolism, re-aeration potential, sunlight, and nutrient 

loading among others can cause significant fluctuations in DO concentrations on a daily 

or even hourly basis.  Many studies have described links between oxygen depletion and 

anthropogenic impacts such as urbanization (Walsh et al. 2005, Wang et al. 2003, Paul 

and Meyer 2001, Meyer et al. 2005).  Oxygen depletion in aquatic systems has been 

linked to increased nutrient loading from agriculture and urban stormwater runoff, 

impervious land cover, and pollution (Boeder & Chang 2008, MacPerson et al 2007, 

Mallin et al. 2006, and NRC 2000). 

It is important to understand the effect human dominated land uses have on 

dissolved oxygen regimes in aquatic communities, especially with the abundance of river 

reaches impaired for oxygen depletion in Florida and the knowledge that adequate 

oxygen concentrations are essential for healthy aquatic systems and normal ecological 
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functions.  This project was initiated to identify correlations between DO regimes in lotic 

(flowing) systems and increasing intensity of human land uses in the surrounding 

watershed.  Research focuses on lotic systems throughout west-central Florida located in 

varying landscapes of human disturbance.  The purpose is to determine what effect 

increasing intensity of human land use has on the DO regime of the stream system, and, 

in turn, what affect the altered system has on the ecological health of the stream.  Growth 

and development in Florida, along with conversion to more human intense land uses 

warrants study and discussion on impacts to dissolved oxygen regimes along a gradient 

of human disturbance.  This information is critical in understanding the human impact on 

natural communities and assisting environmental managers and urban planners in 

developing strategies to mitigate those impacts. 

Research Design 
 

 This study design was based around the general idea that increasing intensity of 

human land uses has an effect on the ecological processes of natural communities.  

Furthermore, adverse impacts to stream ecosystems as a result of urbanization and 

agricultural land uses are well documented (See Literature Review section).  Dissolved 

oxygen is used in this project as a general indicator of the overall health of a waterbody.  

Adequate and sufficient dissolved oxygen regimes are critical to the health of biological 

communities in aquatic ecosystems as well as necessary for physical processes, including 

the breakdown of organic material.   

Figure 1 presents a basic flow diagram indicating general knowledge on the 

effects of intense human land uses on dissolved oxygen in stream ecosystems.  As the 
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figure indicates, increasing human activity in a watershed can alter the chemical and 

physical properties of a stream system leading to depletion of oxygen and decreased 

stream biological integrity.  However, the hypothesis tested during this project revolves 

around the idea that human activity in a watershed may have the opposite effect on 

dissolved oxygen regimes than that depicted in Figure 1.  Increasing intensity of human 

land use in a watershed results in increased DO regimes compared to those in less 

disturbed stream reaches likely as a result of increased nutrient inputs and therefore 

increased primary production.  This hypothesis is tested by identifying correlations 

between land use, nutrients, chlorophyll-a, DO, and biological integrity of the stream. 

Antecedent variables are expected to play an important role in understanding the 

effect of increasing human intensity of land use on dissolved oxygen regimes.  Nutrient 

levels are known to affect concentrations of dissolved oxygen in waterbodies and are 

evaluated as a part of this project.  Increased nutrient loading to a system can cause 

increased primary production, resulting in large diel variations in DO concentrations.  

This information is included to help identify correlations between intensity of land use, 

nutrient inputs, and resulting DO.   

A critical component of this study is the accurate determination of a gradient of 

human disturbance.  Brown and Vivas (2003 & 2005) present a Landscape Development 

Intensity Index (LDI); a land use based index of potential human disturbance.  The index 

reflects non-renewable energy flow through a system and is based on the principle that 

ecological processes are impacted by the intensity of human dominated land uses (FDEP 

2006).  This method of evaluating intensity of human land use is broad enough to 

accurately reflect the wide range of human activities that can affect a waterbody. 
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Figure 1. Basic flow diagram indicating general knowledge on how intensity of human land uses affect stream ecosystems.  This 
diagram is meant to be specific to factors affecting dissolved oxygen concentrations and does not include all possible 
effects to streams. 
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It is important to note the LDI does not directly account for physical or chemical 

disturbance to a stream system.  However by using non-renewable energy flow, the index 

reflects a gradient of human activity in a watershed that is expected to result in 

corresponding physical and chemical alterations to the aquatic system, thereby resulting 

in altered DO regimes.  The LDI is an accepted and viable index of human disturbance 

and is used in this project to represent land uses of increasing human intensity that are 

likely to have some effect on streams and aquatic ecosystems.   

Another important aspect of this study is to identify correlations between DO 

regimes and the overall health of the aquatic ecosystem.  In this study, in-stream 

biological data are used to evaluate the biological integrity of the systems.  The Stream 

Condition Index (SCI) was developed by the FDEP as an index of biological integrity 

using in-stream and riparian habitat conditions and stream macroinvertebrate 

assemblages.  Previous studies have linked increasing LDI to decreasing SCI scores (Fore 

2004 & 2007).  The same framework is employed in this study, and includes DO, to 

identify stream effects as a result of increasing human intensity of land use and altered 

DO regimes.   

This study identifies correlations between DO regimes and increasing intensity of 

human land uses.  Altered DO regimes as a result of increasing human disturbance have 

significant effects on the overall health of aquatic systems.  The research questions 

addressed during this study are: 

• Is there a significant correlation between dissolved oxygen regimes and increasing 

human disturbance in west-central Florida streams? 
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• Do nutrient and chlorophyll-a data correlate to explain shifts in DO as a result of 

increasing human disturbance? 

• Do altered dissolved oxygen regimes result in corresponding changes in 

biological integrity of stream systems? 

This information can be valuable when refining Florida’s dissolved oxygen criterion to 

determine when DO has been altered by the effects of human land uses, and therefore 

assist FDEP in focusing its Total Maximum Daily Load (TMDL) development efforts on 

abating the causes of those alterations. 
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LITERATURE REVIEW 
 

This chapter provides a review of available literature pertaining to the effects of 

human disturbance on dissolved oxygen and stream integrity as it relates to the current 

research presented in this study.  Dissolved oxygen has long been used as a primary 

indication of water quality standards and is an important indicator of general water body 

health (Wang et al. 2003 and Alexander & Stefan 1983).  The presence of adequate 

concentrations of DO in surface waters is critical to the health and survival of aquatic 

ecosystems (Boeder & Chang 2008).  Florida state regulations (62-32.530, F.A.C.) set a 

dissolved oxygen standard for freshwater systems of 5.0 mg/L.  The American Fisheries 

Society (1979) concurs that a minimum value of 5.0 mg/L is necessary to maintain a 

healthy lotic ecosystem.  Understanding the dynamics of DO is complex involving 

chemical, physical, and biological processes.  Re-aeration potential, photosynthesis, and 

respiration have been identified in the literature as three primary factors affecting DO 

(Odum 1956, Schurr & Ruchti 1977, Parkhill & Gulliver 1999, and Wang et al. 2003).  In 

healthy lotic systems, DO fluctuates near saturation varying with temperature and 

metabolism (Wang et al. 2003).  However, oxygen concentrations depressed below 

saturation can indicate a water quality concern, such as increased nutrient inputs 

(Wilcock 1986 and Wang et al. 2003).  The National Research Council (2000), Mallin et 

al. (2006), and MacPerson et al (2007), among others, report the catalyst for increased 

oxygen demand is often the result of increased nutrient loading.  Low oxygen 
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concentrations have been linked to impaired development, maturation, and increased 

mortality of fish as well as macroinvertebrate habitat degradation (Rounds & Doyle 1997, 

Cox 2003, and Boeder & Chang 2008).  

Many studies have been devoted to understanding the dynamics of DO in stream 

systems (Odum 1956, O’Conner & Di Toro 1970, Kelly et al. 1974, Gulliver & Stephan 

1984, Butcher & Covington 1995, Chaudhury et al. 1998, and Wang et al. 2003).  Some 

of these studies have been based on models ranging from simple (Chapra & Di Toro 

1991) to very complex, requiring a significant number of input parameters (Hornberger & 

Kelly 1972 and Edwards et al. 1978).  Most modeling efforts for DO have evolved from 

the basic Sag equation pioneered by Streeter and Phelps (1925), which has been 

extensively used as a tool in stream pollution (Berkun & Aras 2007).  The Sag curve 

shows that oxygen demand in a stream is increased at the point where some pollutant is 

introduced and oxygen is replenished at some point downstream indicating recovery 

(Streeter and Phelps 1925).  While DO modeling efforts have been used to characterize 

stream conditions, metabolism, respiration, and photosynthesis, as well as to estimate the 

effects of pollutant loading, no modeling studies have been uncovered that attempt to 

evaluate DO along a human disturbance gradient. 

The evaluation of DO in urbanizing landscapes has garnered more attention in 

recent years.  Brilly et al. (2006) describe the complexity in characterizing the impact 

urbanization has on stream systems.  They conclude the heavily modified concrete 

channel of an urbanized stream had a significant effect on the dissolved oxygen regime 

with oversaturation due to excessive algae growth.  Wang et al. (2003) found that streams 

in an urban landscape had lower rates of metabolism than those in an agricultural 



www.manaraa.com

 

 15

landscape.  Colangelo (2007) studied DO in the Kissimmee River, Florida showing 

increased DO concentrations in the post-restoration period compared to pre-restoration, 

which included a series of impounded reservoirs and water control structures.  Boeder & 

Chang (2008) shows that urban streams and associated land cover changes affect the 

volume and timing of runoff, causing water quality impacts that can lead to low DO 

concentrations.   

As human populations congregate in urban areas, ecological studies on the effects 

of urbanization on stream ecosystems are increasing.  Meyer et al. (2005) and Walsh et 

al. (2005) describe an “urban stream syndrome” that documents the ways in which urban 

streams are ecologically degraded.  Paul and Meyer (2001) state urbanization is second 

only to agriculture as the major cause of stream impairment.  Walsh et al. (2005) provide 

a thorough review of current literature pertaining to the urban stream syndrome and 

indicate directions for future research to alleviate its effects.  Symptoms of the syndrome 

include a flashier hydrograph, elevated concentrations of nutrients and contaminants, 

altered channel morphology and stability, and reduced biotic richness with increased 

dominance of tolerant species (Paul and Meyer 2001, Meyer et al. 2005, Walsh et al. 

2005).  Reduced baseflow from an increase in impervious area is described as another 

symptom, usually compounding water chemistry problems, such as increasing diel 

variation in dissolved oxygen (Walsh et al. 2005).  In addition, stormwater impacts have 

been identified as the catalyst for correlations between stream condition and catchment 

imperviousness (Walsh et al. 2005, Paul and Meyer 2001).   

The LDI has been accepted as a viable index of human disturbance and is 

included as a metric calculated for the human disturbance gradient (HDG) (Fore et al. 
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2007).  The HDG calculates disturbance based on five metrics including water quality, 

energy flow (LDI), and stream macroinvertebrate biologic integrity (Fore et al. 2007).  

The HDG uses ammonia to summarize water quality as it may be a general indicator of 

urbanization and agriculture (Fore et al. 2007).  This study uses dissolved oxygen to 

summarize water quality as it is an indicator of general aquatic health and is affected by 

measures of disturbance used in other metrics, such as nutrients. 

Mack (2006) states that the LDI uses quantified land use percentages and 

therefore has many advantages over more qualitative human disturbance gradients.  Mack 

(2006) showed the LDI was positively correlated with a human disturbance gradient 

(Ohio Rapid Assessment Method for Wetlands) and an Index of Biotic Integrity (IBI) for 

a large wetland data set in Ohio.  However, according to Novotny (2005), an acceptable 

IBI should not rely on a single stressor such as percent imperviousness because it may 

not represent a true cause-effect proximate relationship.  Percent impervious surface has 

been shown to be a relatively good indicator of surface water pollution in watersheds, 

although this correlation breaks down in agricultural watersheds where imperviousness 

may be relatively unimportant (Brown and Vivas 2005).  The LDI, then, is a continuous 

index and differs from other measures of land use intensity because it scales the intensity 

of activity based on non-renewable energy use, a characteristic common to all human 

dominated land uses (Brown and Vivas 2005). 

The Landscape Development Intensity Index has also been shown to be an 

effective predictor of stream macroinvertebrate biological integrity (FDEP 2006).  A 

strong correlation has been demonstrated between the LDI and the Stream Condition 

Index (SCI) by Fore (2004).  In this study, the SCI is used to evaluate biologic integrity 
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of the systems and is correlated with the LDI scores to determine if the same pattern 

observed by Fore (2004) is observed in the lotic systems used here.   

Literature has shown shifts in dissolved oxygen regimes to have significant 

effects on the biological integrity of stream systems.  Availability of oxygen has been 

recognized as a factor in the composition of freshwater communities affecting 

distribution of many species (Hynes 1960, Giller and Malmqvist 1998, Dodds 2002, and 

Connolly et al. 2004).  Hynes (1960), Pearson and Penridge (1987) and Connolly et al. 

(2004) show that anthropogenic impacts can cause decreased oxygen conditions resulting 

in changes to community structure and in many cases a loss of diversity.  Walton et al 

(2007) also show that urban land use has a negative association with biological integrity 

of streams.  Jacobsen (2008) concluded that oxygen saturation was the best predictor of 

stream macroinvertebrate richness.  Available literature has shown dissolved oxygen 

concentration and saturation to be significantly linked to the biological integrity of stream 

macroinvertebrate assemblages.  This study builds on the current base of knowledge by 

attempting to link in-stream effects of altered DO regimes along a gradient of human 

disturbance.   

 The goal of this study is to build on the current base of knowledge by using 

empirical data to identify direct correlations between dissolved oxygen and rates of 

human disturbance.  This study includes more data points over a longer period of time 

then previous studies and includes a measure of stream biological integrity to further 

identify the potential impacts of altered dissolved oxygen regimes. 



www.manaraa.com

 

 18

 

 

MATERIALS AND METHODS 
 

This chapter describes the methods used to evaluate dissolved oxygen regimes 

against a gradient of human disturbance in west-central Florida streams.  The methods 

used to identify rates of disturbance and subsequent biological integrity of the subject 

streams is also provided. 

Site Selection 
 

This study focuses on west-central Florida and specifically the Tampa Bay area.  

The FDEP has selected approximately 350 water bodies, including streams, rivers, 

canals, lakes, and estuaries, throughout Florida for inclusion in a statewide water quality 

survey to collect data on dissolved oxygen and nutrient concentrations for the purpose of 

revising state water quality standards.  Twenty-six waterbodies from the statewide dataset 

represent the lotic systems of the Tampa Bay area and west-central Florida located 

throughout Hillsborough, Pinellas, Manatee, Polk, and Pasco counties (Figure 2).  These 

26 stations make up the dataset used for this study and include all the lotic systems that 

were included in the statewide data set for west-central Florida.   

These lotic systems vary in size from low velocity streams to large rivers.  

Monitoring stations are located along all of the major Tampa Bay tributaries, as well as 

many smaller tributaries feeding the larger systems.  Station names, IDs, and coordinates 

are presented in Table 1.  The dataset includes inland and coastal streams and provides a 
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Figure 2. Monitoring Station Locations. 



www.manaraa.com

 

 20

good representation of the diversity of lotic systems throughout west-central Florida and 

the Tampa Bay area.  The stations are located in varying landscapes ranging from rural to 

agricultural to urban settings. 

 

Table 1. Station names and locations, west-central Florida. 

Station ID Station Name Latitude Longitude 
HIL-1 Mango Creek 27.97777472 -82.3463173 
HIL-2 Brushy Creek 28.06589772 -82.55529783 
HIL-3 Sweetwater Creek 28.04307258 -82.51181536 
HIL-4 Sweetwater Creek 28.00033 -82.56456 
HIL-5 Hillsborough River 28.15111311 -82.22626586 
HIL-6 Hollomans Branch 28.09380971 -82.24892382 
HIL-7 Delaney Creek 27.92374602 -82.37205405 
HIL-8 Delaney Creek 27.92948 -82.31095 
HIL-9 Fishhawk Creek 27.82192873 -82.20348711 

HIL-10 Alafia River 27.79151012 -82.20949805 
HIL-11 Little Manatee River 27.6630995 -82.30080073 
MAN-1 Manatee River 27.59203278 -82.08192905 
MAN-2 Wares Creek 27.468325 -82.570529 
MAN-3 Williams Creek 27.455666 -82.485258 
PAS-1 Anclote River 28.21324018 -82.67836345 
PAS-2 Withlacoochee River South 28.35262888 -82.12632803 
PAS-3 Pithlachascottee River 28.32950795 -82.53628406 
PAS-4 Pithlachascottee River 28.24018407 -82.67372628 
PAS-5 Anclote River 28.21465233 -82.66573936 
PIN-1 Surlew Creek 28.04018 -82.74659 
PIN-2 Long Branch 27.91507435 -82.72460915 
PIN-3 Long Branch 27.91315148 -82.7410334 
POL-1 Itchepackesassa Creek 28.04214604 -82.01752026 
POL-2 Banana L Mid Stream 27.98848007 -81.92082793 
POL-3 Tiger Creek 27.81206389 -81.44429611 
POL-4 Livingston Creek 27.70860793 -81.44644802 
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Landscape Development Intensity Index (LDI) 
 

This section presents the method for determining the gradient of human 

disturbance used in this study.  For each stream reach, the LDI was calculated for an area 

that includes the station location, a 100 meter buffer on either side of the stream, and 10 

km of the upstream drainage basin (zone of calculation).  Brown and Vivas (2003 & 

2005) and Fore (2004 & 2007) have determined this technique to adequately represent 

the stream reach and state that increasing buffers and upstream distances does not provide 

more significant results.  Land uses and percent area occupied by each land use in the 

zone of calculation for each station were determined using 2005 Geographic Information 

System (GIS) land use coverage maps.  Land uses were identified using the standard 

Florida Land Use and Cover Classification System (FLUCCS).  Land uses that fall into 

the FLUCCS code categories of lakes and reservoirs were not included in the LDI 

calculation.  This was done to prevent skewing the LDI calculation as these land uses do 

not represent a direct source of anthropogenic load to the stream (Dr. Gary Payne, 

personal communication).  In addition, the stream itself was not included in the 

calculation (Dr. Gary Payne, personal communication). 

As previously described, the LDI is a land use based index of potential human 

disturbance with values calculated spatially based on coefficients applied to land uses 

within watersheds, according to Brown and Vivas (2005).  Coefficients are quantified 

using emergy use per unit area per time.  Emergy is energy that has been corrected for 

different qualities and is expressed in units of solar emergy joule (sej) (Brown and Vivas 

2005).  The units for quantifying the intensity of human activity are therefore sej/ha*yr-1 
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(empower density) (Brown & Vivas 2005 and FDEP 2006).  Brown and Vivas (2003 and 

2005) collected energy consumption data from billing records and literature sources for 

non-renewable energy sources such as electricity, fuels, fertilizers, pesticides, and water 

(public supply and irrigation) (FDEP, 2006).  Since this index was designed to 

specifically measure human disturbance, only non-renewable energy sources were 

included in the calculation (Brown and Vivas 2003 and 2005, FDEP, 2006).  Empower 

density of natural systems is assigned a value of 0 sej/ha*yr-1.  The LDI coefficients are 

calculated as the natural log of the empower densities on a scale from 1 to 10 (FDEP 

2006).  Natural lands are given an LDI coefficient of 1.0, while an LDI coefficient of 

10.0 is associated with high intensity land uses (e.g. central business district or power 

plant) (Brown and Vivas 2003 & 2005 and FDEP 2006). 

Using the land use coefficients and the percent area occupied by each land use, 

the LDI was calculated as follows, described by Brown and Vivas (2003 & 2005): 

 
   LDItotal = Σ (LDCi * %LUi) 
 Where, 
 LDItotal = Landscape Development Intensity Index for the area of influence 
 %LUi = percent of total area of influence in land use i 
 LDCi = landscape development intensity coefficient for land use i 
 

In accordance with Brown and Reiss (2006), an LDI break point of less than or 

equal to 2.0 was used to identify minimally disturbed reference sites and an LDI of 

greater than 2.0 designates areas with increasing levels of human disturbance (FDEP 

2006).   
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Dissolved Oxygen, Nutrient, and Chlorophyll-a Data Acquisition  
 

This section describes the field methodologies employed for data collection of 

dissolved oxygen, nutrient, and chlorophyll-a constituents necessary to complete this 

study.  Dissolved oxygen, nutrient, and chlorophyll-a data were collected in each of the 

26 lotic systems on a quarterly basis for one year between March 2005 and January 2006.  

During each quarter, a YSI 6600 multi-parameter data sonde was deployed in the stream 

and programmed to record field measurements in 15 minute intervals over a four day (96 

hour) period.  The sonde recorded temperature (ºC) and dissolved oxygen in mg/L as well 

as percent saturation.  Each quarter the YSI data sondes were deployed in the same 

location at approximately mid-stream and mid-depth in streams and rivers with a total 

water depth of one meter or less and at mid-stream and a depth of one-half meter below 

the water surface in systems with a total water depth of more than one meter (Figure 3).  

Sondes were deployed with probes facing upstream and encased in PVC tubes with 

multiple one inch holes drilled in the tube to allow sufficient water flow over the probes.  

The PVC tubes were painted in camouflage for security and provided safety for the YSI 

from debris floating downstream (Figure 3).  Data sondes were properly calibrated and 

verified according to manufacturer’s and FDEP protocols for temperature (DEP SOP 

001/01 FT 1400) (acceptance criteria +/- 0.2°C) and dissolved oxygen (DEP SOP 001/01 

FT 1500) (acceptance criteria +/- 0.3 mg/L) before and after each 96 hour deployment 

period.  Following each deployment, dissolved oxygen data were uploaded from the YSI 

data sonde using EcoWatch version 3.15.00 (EcoWatch) software and entered into a 

Microsoft Access database.  
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Figure 3. Typical sonde deployment structure and positioning in stream.
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For each deployment period at each station the overall minimum, maximum, and mean 

dissolved oxygen (DOM) values were calculated.  In addition, the minimum and 

maximum DO values measured each day of the four day deployment were averaged to 

obtain average daily minimum and maximum concentrations.  The average daily range of 

DO measurements (DOR) was determined by subtracting the average daily maximum 

from the average daily minimum concentrations for each quarterly deployment.  The 

mean DO deficit (DOD) concentration was calculated for each station and each quarter 

using the following formula: 

   DOD = (DOM/DOSAT) – DOM 
 Where, 
 DOD = mean DO deficit in mg/L 
 DOM = mean DO concentration over the four day deployment period 
 DOSAT = mean DO percent saturation over the four day deployment period 

The above formula was designed for this study and is only accurate for use in this 

study.  This is because the YSI 6600 data sonde internally compensates for temperature 

when calculating the percent saturation and the conversion from percent saturation and 

temperature to a solubility in mg/L is carried out using formulae available in Standard 

Methods for the Examination of Water and Wastewater (ed. 1989) (YSI 2002).  This 

allows the above calculation to accurately determine the mean dissolved oxygen value, at 

any given time, if the percent saturation were 100 percent.  Then by subtracting the 

observed mean oxygen concentration, the mean oxygen deficit can be derived.  In 

addition to the above calculations, the percent of DO values that exceeded Florida’s Class 

III fresh water dissolved oxygen standard (shall not be less than 5.0 mg/L) in all 

measurements collected over the four day deployment period for each quarter was also 

determined (DO% < 5). 
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During data sonde retrieval, water quality grab samples were collected for 

nitrate+nitrite, total Kjeldahl nitrogen, and chlorophyll-a (corrected for phaeophytin) 

each quarter.  Samples were collected at the same depth as the sonde deployment.  All 

samples were properly preserved in the field according to FDEP protocols.  Samples 

collected for chlorophyll-a analysis were filtered through a GF/C glass fiber filter (DEP 

SOP BB-29) within 24 hours of collection and immediately frozen with dry ice for 

transport to the laboratory.   

All field sampling was conducted according to the FDEP Standard Operating 

Protocols (SOP) listed below.  All laboratory analyses were conducted by a certified 

laboratory accredited by the National Environmental Laboratory Accreditation 

Conference (NELAC).   

FC 1000 - Cleaning/Decontamination FS 2100 – Surface Water Sampling 
FD 1000 – Documentation   FS 2000 – General Aqueous Sampling 
FQ 1000 – Field Quality Control FT 1000-1600 – General Field Testing and  
FS 1000 – General Sampling   Measurement 

Stream Condition Index (SCI) 
 

In order to measure and determine the potential effects of human land use on 

dissolved oxygen regimes, a measure of stream integrity is included in this study.  

Methodologies for collecting the stream biological integrity data are presented here.  

Biological assessment data were collected during the second and fourth deployment 

periods at each site to evaluate seasonal differences.  At each of the 26 stations, a Stream 

Habitat Assessment (FDEP-SOP-001/01 Form FD 9000-6) and a Physical/Chemical 

Characterization Field Sheet (FDEP SOP-001/01 Form FD 9000-3) were completed.  The 
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habitat assessment is comprised of a variety of physical criteria that are independently 

evaluated on a numerical scale, and the component values are summed to provide a 

quantitative rating for a stream segment that is presumed to be proportional to the quality 

of the stream for native macroinvertebrates.  The Physical/Chemical Characterization 

also provides for the delineation of various microhabitats in the stream into categories to 

ensure that sampling of such microhabitats is conducted in general proportion to their 

abundance. 

Macroinvertebrate sampling was performed according to the Stream Condition 

Index (SCI) protocol developed by FDEP (FDEP-SOP-001/01 FS 7420) by personnel 

with training and experience with the SCI who have successfully passed FDEP audits for 

the protocol.  The SCI is a standardized macroinvertebrate sampling methodology that 

accounts for the various microhabitats available (e.g., leaf packs, snags, aquatic 

vegetation, roots/undercut banks) within a 100-m segment of stream.  Utilizing this 

methodology, twenty 0.5-m D-frame dip net sweeps were performed within a 100-m 

segment of the stream.  The number and quality of benthic macroinvertebrate 

microhabitats present during the sampling event determines the number of sweeps 

performed within each microhabitat type.  Macroinvertebrate samples are preserved in 

the field using 99 percent Isopropyl alcohol.  The amount of alcohol used is dependent on 

the amount of organic material and site water present in the sample necessary to achieve 

a 90 percent final concentration of alcohol.  Consistent with FDEP protocols, each 

benthic macroinvertebrate sample was sorted in the laboratory and taxonomically 

analyzed according to FDEP SOP-001/01 LT 7200.  Macroinvertebrate identifications 

were made to the lowest possible taxonomic category.   



www.manaraa.com

 

 28

Data from each invertebrate sample were used to calculate the various SCI 

metrics and resulting overall SCI values per the methodology for the Florida Peninsula 

(Table 2).  For each equation in Table 2, “X” equals the number representing the count or 

percentage listed in the corresponding row of the left column.  For calculated values 

greater than ten, the score is set to ten; for values calculated less than zero, the score is set 

to zero. 

 
Table 2. Equations for calculating SCI metrics for peninsular Florida (range from zero 

to ten).   

SCI Metric Peninsula Score 

Total Taxa 10(X-16)/25 
Ephemeropteran Taxa 10X/5 

Trichopteran Taxa 10X/7 
Percent Collector-Filterer Taxa 10(X-1)/39 

Long-lived Taxa 10X/4 
Clinger Taxa 10X/8 

Percent Dominant Taxon 10-(10[(X-10)/44]) 
Percent Tanytarsini 10[ln(X+1)/3.3] 

Sensitive Taxa 10X/9 
Percent Very Tolerant Taxa 10-(10[ln(X+1)/4.1]) 

 

It is important to note that in the fall of 2006, FDEP revised the SCI protocol by 

changing the range of individual macroinvertebrates required for sample analysis from 

100-120 to 140-160, requiring the SCI to be determined as the average of two replicate 

samples, and updating the aquatic life use categories that describe the resulting SCI 

scores.  The data acquisition effort for this study was conducted prior to the FDEP 

revisions to the protocol.  However, the resulting SCI scores were evaluated using the 

revised aquatic life use categories (Table 3) to employ the most accurate and up to date 

information for evaluating the biological integrity of the stream systems in this study.  
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Every effort was made to conduct the biological monitoring during retrieval of the data 

sonde.  If this was not possible, the monitoring was conducted within two weeks after 

retrieval of the sonde following a successful deployment. 

 
Table 3. Aquatic life use categories for SCI scores, peninsular Florida. 

SCI 
Category 

SCI 
Range Typical Description for Range 

Category 1 

(Exceptional) 
71-100 

Higher diversity of taxa than for Category 2, particularly for Ephemeroptera 
and Trichoptera; several more clinger and sensitive taxa than found in 
Category 2; high proportion for Tanytarsini; few individuals in the 
dominant taxon; very tolerant individuals make up a very small percentage 
of the assemblage. 

Category 2 

(Healthy) 
35-70 

Diverse assemblage with 30 different species found on average; several 
different taxa each of Ephemeroptera, Trichoptera, and long-lived and, on 
average, 5 unique clinger and 6 sensitive taxa routinely found; small 
increase in dominance by a single taxon relative to Category 1; very tolerant 
taxa represent a small percentage of individuals, but noticeably increased 
from Category 1. 

Category 3 

(Impaired) 
0-34 

Notable loss of taxonomic diversity; Ephemeroptera, Trichoptera, long-
lived, clinger, and sensitive taxa uncommon or rare; half the number of 
filterers than expected; assemblage dominated by a tolerant taxon, very 
tolerant individuals represent a large portion or the individuals collected. 

* Adapted from Fore (2004). 

Data Analyses 
 

 Non-parametric Spearman rank order correlation analyses were used in this study 

to identify relationships among the dissolved oxygen, nutrient, LDI, and SCI data.  Non-

parametric statistics were used because the data do not meet the assumptions of 

parametric analyses (i.e. normal distribution).  Analyses were run using STATISTICA 

version 7.1 (StatSoft, Inc 2005) software.  Data was lumped together to provide an 

overall analysis as well as separated by quarter at each station to determine any seasonal 

differences. 
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DESCRIPTIVE RESULTS 
 

This chapter presents the results of the raw data collection effort for all variables 

used in this study.  The data collection effort for this project was conducted between 

March 2005 and January 2006.  Table 4 shows station IDs and dates of data collection.  

Logistical issues forced the data collection to begin approximately 2 months late and 

resulted in the following quarterly breakdown; Quarter 1 – March-April, Quarter 2 – 

May–July, Quarter 3 – August–October, and Quarter 4 – November–January.  During 

Quarter 1 data sonde malfunctions prevented collection of dissolved oxygen data from 

stations HIL-6 and POL-4.  During Quarter 2, deployment of the data sonde at stations 

HIL-6 and HIL-11 occurred the first week of August, but were still included in the 

Quarter 2 data set.  Also in Quarter 2, a sonde malfunction at HIL-7 midway through 

deployment resulted in only two days of useable dissolved oxygen data.  
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Table 4. Quarterly data collection periods, west-central Florida, 2005 – 2006. 

Data Collection Periods Station   
ID Quarter 1 Quarter 2 Quarter 3 Quarter 4 

HIL-1 3/18/05 - 3/22/05 6/2/05 - 6/6/05 8/25/05 - 8/29/05 12/2/05 - 12/6/05 

HIL-2 3/25/05 - 3/29/05 6/9/05 - 6/13/05 9/2/05 - 9/6/05 11/17/05 - 11/21/05 

HIL-3 3/11/05 - 3/15/05 6/2/05 - 6/6/05 9/2/05 - 9/6/05 12/1/05 - 12/5/05 

HIL-4 3/3/05 - 3/7/05 5/19/05 - 5/23/05 8/18/05 - 8/22/05 11/17/05 - 11/21/05 

HIL-5 3/3/05 - 3/7/05 5/19/05 - 5/23/05 8/18/05 - 8/22/05 11/1/05 - 11/15/05 

HIL-6 --- 8/1/05 - 8/5/05 10/14/05 - 10/18/05 12/16/05 - 12/20/05 

HIL-7 3/18/05 - 3/22/05 5/27/05 - 5/29/05 9/2/05 - 9/6/05 12/2/05 - 12/6/05 

HIL-8 3/18/05 - 3/22/05 5/27/05 - 5/31/05 9/2/05 - 9/6/05 12/2/05 - 12/6/05 

HIL-9 3/4/05 - 3/8/05 5/20/05 - 5/24/05 9/2/05 - 9/6/05 11/18/05 - 11/22/05 

HIL-10 3/4/05 - 3/8/05 5/20/05 - 5/24/05 9/2/05 - 9/6/05 11/18/05 - 11/22/05 

HIL-11 4/22/05 - 4/26/05 8/1/05 - 8/5/05 9/30/05 - 10/4/05 1/6/06 - 1/10/06 

MAN-1 4/7/05 - 4/11/05 6/9/05 - 6/13/05 9/15/05 - 9/19/05 1/6/06 - 1/10/06 

MAN-2 3/11/05 - 3/15/05 5/27/05 - 5/31/05 9/2/05 - 9/6/05 1/5/06 - 1/9/06 

MAN-3 3/11/05 - 3/15/05 5/27/05 - 5/31/05 9/2/05 - 9/6/05 1/5/06 - 1/9/06 

PAS-1 4/8/05 - 4/12/05 6/10/05 - 6/14/05 9/8/05 - 9/12/05 12/2/05 - 12/6/05 

PAS-2 3/24/05 - 3/28/05 6/9/05 - 6/13/05 8/18/05 - 8/22/05 11/11/05 - 11/15/05 

PAS-3 4/8/05 - 4/12/05 6/3/05 - 6/7/05 9/8/05 - 9/12/05 12/8/05 - 12/12/05 

PAS-4 4/8/05 - 4/12/05 6/10/05 - 6/14/05 9/8/05 - 9/12/05 12/2/05 - 12/6/05 

PAS-5 4/8/05 - 4/12/05 6/10/05 - 6/14/05 9/8/05 - 9/12/05 12/2/05 - 12/6/05 

PIN-1 3/10/05 - 3/14/05 5/19/05 - 5/23/05 8/18/05 - 8/22/05 11/11/05 - 11/15/05 

PIN-2 3/11/05 - 3/15/05 5/27/05 - 5/31/05 8/19/05 - 8/23/05 11/17/05 - 11/21/05 

PIN-3 3/10/05 - 3/14/05 5/27/05 - 5/31/05 8/19/05 - 8/23/05 11/17/05 - 11/21/05 

POL-1 3/4/05 - 3/8/05 5/20/05 - 5/24/05 8/18/05 - 8/22/05 11/10/05 - 11/14/05 

POL-2 3/4/05 - 3/8/05 5/20/05 - 5/24/05 8/19/05 - 8/23/05 11/10/05 - 11/14/05 

POL-3 4/7/05 - 4/11/05 7/7/05 - 7/11/05 9/23/05 - 9/27/05 12/16/05 - 12/20/05 

POL-4 --- 7/1/05 - 7/5/05 9/23/05 - 9/27/05 12/16/05 - 12/20/05 
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Landscape Development Intensity Index (LDI) 
 

This section shows the results of the LDI calculation effort conducted for the 26 

stations in this study.  LDI scores were calculated using 2005 GIS land use coverages and 

are presented in Table 5.  Appendix A shows the raw data for each station used to 

calculate the index.   

 
Table 5. Landscape Development Intensity Index scores, calculated from 2005 GIS 

land use coverages for west-central Florida. 

Station ID Stream Name LDI Score 
HIL-1 Mango Creek 4.15 
HIL-2 Brushy Creek 5.35 
HIL-3 Sweetwater Creek 6.72 
HIL-4 Sweetwater Creek Tributary 7.22 
HIL-5 Hillsborough River 2.59 
HIL-6 Hollomans Branch 4.00 
HIL-7 Delaney Creek 4.84 
HIL-8 Delaney Creek 1.38 
HIL-9 Fishhawk Creek 2.91 

HIL-10 Alafia River 2.68 
HIL-11 Little Manatee River 2.07 
MAN-1 Manatee River 1.42 
MAN-2 Wares Creek 7.73 
MAN-3 Williams Creek 3.46 
PAS-1 Anclote River 2.09 
PAS-2 Withlacoochee River South 2.05 
PAS-3 Pithlachascottee River 1.45 
PAS-4 Pithlachascottee River 1.84 
PAS-5 Anclote River 1.70 
PIN-1 Surlew Creek 7.61 
PIN-2 Long Branch 6.83 
PIN-3 Long Branch 8.60 
POL-1 Itchepackesassa Creek 5.20 
POL-2 Banana L Mid Stream 7.18 
POL-3 Tiger Creek 1.23 
POL-4 Livingston Creek 2.29 
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The overall LDI scores ranged from 1.23 to 8.60 across the 26 stations.  Six 

stations (HIL-8, MAN-1, PAS-3, PAS-4, PAS-5, and POL-3) have LDI scores less than 

2.0 and are reference stations indicative of areas with minimal levels of human 

disturbance, according to Brown and Reiss (2006).  The scores are well distributed along 

the LDI scale with 13 stations having a LDI score between 2.0 and 6.0, and another seven 

scores greater than 6.0.   

The 11 Hillsborough County stations were wide ranging with LDI scores between 

1.38 and 7.22.  All of the West-Central Florida counties included in this study had at least 

one reference station (LDI < 2.0), with the exception of Pinellas County.  Pinellas County 

is the most densely populated county in Florida (Pinellas County Government, 2009) and 

therefore it is not surprising that LDI scores from stations in this county indicate more 

intense levels of human activity. 

Dissolved Oxygen 
 

The results of the dissolved oxygen data collection effort are presented in this 

section.  Table 6 presents the quarterly range and mean dissolved oxygen concentrations 

(DOM) collected over each deployment at all stations.  Eighteen of the 26 stations had 

overall mean dissolved oxygen concentrations (mg/L) that fell below Florida’s Class III 

state water quality standard (5.0 mg/L) during at least one quarter.  Twenty-two stations 

had DO concentrations that exceeded the standard at some time during the deployment 

during at least one quarter.  DO concentrations at two stations (PAS-2 and PAS-4) 

exceeded the state water quality standard in all measurements, during all quarters. 
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Table 6. Overall quarterly range and mean dissolved oxygen concentrations, west-
central Florida, 2005 – 2006. 

Dissolved Oxygen (mg/L) 
Quarter 1 Quarter 2 Quarter 3 Quarter 4 Station  

ID DOM 
(mg/L) Range DOM 

(mg/L) Range DOM 
(mg/L) Range DOM 

(mg/L) Range 

HIL-1 6.4 5.5 - 8.0 4.2 3.5 - 6.7 3.7 2.9 - 6.5 7.5 6.0 - 8.5 
HIL-2 6.8 6.3 - 7.3 6.0 4.4 - 6.6 5.8 5.2 - 6.7 6.6 5.6 - 8.0 
HIL-3 5.5 4.3 - 7.2 3.7 2.9 - 5.1 5.1 3.7 - 6.4 6.4 5.4 - 7.6 
HIL-4 3.0 1.9 - 8.6 0.5 -0.1 - 1.7 0.8 0.2 - 5.4 2.7 0.4 - 4.7 
HIL-5 7.4 7.0 - 7.7 6.5 6.3 - 6.9 5.8 5.5 - 6.1 6.4 6.2 - 6.5 
HIL-6 --- --- 5.2 4.9 - 6.2 6.3 5.8 - 7.3 7.6 6.9 - 8.9 
HIL-7 7.3 6.1 - 9.6 9.2 1.2 - 17.1 3.9 2.8 - 5.8 8.5 5.8 - 12.1 
HIL-8 3.9 2.0 - 6.4 2.3 0.7 - 4.7 1.6 0.9 - 4.5 5.5 4.2 - 6.6 
HIL-9 8.0 7.1 - 9.0 6.2 6.0 - 6.5 5.9 5.7 - 6.2 7.3 6.6 - 8.0 

HIL-10 8.5 8.0 - 9.2 6.9 6.0 - 8.2 6.2 5.7 - 6.9 7.9 7.0 - 9.1 
HIL-11 8.3 7.9 - 8.7 6.5 6.4 - 6.6 7.0 6.9 - 7.4 9.1 3.1 - 11.2 
MAN-1 2.2 1.5 - 3.3 1.2 0.5 - 2.2 0.6 0.1 - 2.1 3.6 2.4 - 5.5 
MAN-2 5.8 3.4 - 9.7 5.8 0.6 - 12.9 4.0 1.0 - 10.0 7.1 4.2 - 10.8 
MAN-3 9.3 7.4 - 10.9 5.1 3.4 - 6.0 6.6 4.9 - 8.7 8.2 7.3 - 9.1 
PAS-1 4.9 4.6 - 5.2 5.0 4.6 - 5.6 5.4 5.1 - 6.0 4.8 3.9 - 5.4 
PAS-2 3.2 2.8 - 3.9 3.1 2.2 - 4.7 1.6 1.4 - 2.1 2.7 2.6 - 2.9 
PAS-3 5.5 5.1 - 6.0 5.1 4.5 - 6.0 3.4 3.0 - 4.0 5.6 4.7 - 7.1 
PAS-4 4.0 3.7 - 4.4 4.3 3.7 - 4.8 4.0 3.6 - 4.4 4.2 3.6 - 4.6 
PAS-5 4.8 4.4 - 5.3 5.1 4.7 - 5.6 5.4 5.2 - 5.8 4.1 3.4 - 4.6 
PIN-1 8.0 7.3 - 9.1 6.6 6.2 - 7.6 6.6 6.0 - 7.0 7.2 6.8 - 7.9 
PIN-2 4.1 0.1 - 12.2 1.5 0.1 - 5.4 0.7 0.2 - 2.7 1.0 0.3 - 3.6 
PIN-3 3.5 1.1 - 6.0 0.8 0.1 - 4.1 0.9 0.3 - 3.8 0.7 0.1 - 2.9 
POL-1 6.7 4.7 - 8.9 4.2 3.1 - 5.8 4.2 2.0 - 6.8 6.9 5.6 - 9.1 
POL-2 9.2 7.1 - 11.8 3.6 0.2 - 10.1 4.9 1.1 - 10.5 6.8 3.7 - 12.3 
POL-3 5.2 4.9 - 5.6 1.9 1.7 - 2.8 2.8 2.6 - 3.0 6.0 5.4 - 6.8 
POL-4 --- --- 2.7 2.4 - 3.3 3.5 3.2 - 4.1 7.2 5.9 - 9.8 

 

As expected, DO concentrations were generally higher during Quarters 1 and 4 

when lower water temperatures allow for more oxygen absorption.  During Quarters 1 

and 4 the number of stations with mean DO concentrations below the standard was nine 

and eight, respectively.  Quarters 2 and 3 had 13 and 15 stations, respectively, with 

concentrations below the 5.0 mg/L standard.   
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The mean DO saturation percent (DOSAT), the mean oxygen deficit (DOD), and 

the percentage of DO values that fell below the water quality standard (DO% < 5) for each 

quarter are presented in Table 7.  The mean saturation percent ranged from 5.9 to 119.7 

percent across all stations and quarters.  Saturation percentages above 100 percent 

indicate supersaturated conditions, usually resulting from algae blooms at the time of 

monitoring.  Both the minimum and maximum saturation percent occurred during 

Quarter 2.  Two stations (POL-2; Quarter 1 and HIL-7; Quarter 2) had mean saturation 

percents above 100 percent likely indicating the presence of an algae bloom at the time of 

sampling.   

The mean oxygen deficit ranged from -1.5 to 8.4 mg/L across all stations and 

quarters.  Two stations (POL-2; Quarter 1 and HIL-7; Quarter 2) had negative oxygen 

deficits and coincide with the super-saturation conditions at the same stations, during the 

same sampling events.  The mean oxygen deficit across quarters was very similar ranging 

from 3.3 mg/L (Quarter 1) to 3.8 mg/L (Quarter 3), indicating no significant seasonal 

difference.   

Also listed in Table 7 is the percentage of DO values that exceeded the state water 

quality standard during each quarter.  Only four stations (HIL-5, HIL-9, HIL-10, and 

PIN-1) did not exceed the standard in any measurements during any quarter, none of 

which were characterized as reference stations by the LDI scores.  The mean percentage 

of DO values below the standard during Quarters 1 and 4 was 36.1 and 33.5 percent, 

respectively.  Quarters 2 and 3 had a mean of 57.1 and 55.4 percent of values below the 

standard, respectively.  This pattern is expected showing warmer summer temperatures 

somewhat increase the likelihood dissolved oxygen may fall below the standard.
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Table 7. Mean dissolved oxygen saturation percent, mean oxygen deficit, and percentage of dissolved oxygen values below 
Florida’s water quality standard (5.0 mg/L), west-central Florida, 2005 – 2006. 

Dissolved Oxygen (mg/L) 
Quarter 1 Quarter 2 Quarter 3 Quarter 4 Station 

ID DOSAT 
(%) 

DOD 
(mg/L) 

DO % < 5 
(%) 

DOSAT   
(%) 

DOD 
(mg/L) 

DO % < 5 
(%) 

DOSAT  
(%) 

DOD 
(mg/L) 

DO % < 5 
(%) 

DOSAT  
(%) 

DOD 
(mg/L) 

DO % < 5 
(%) 

HIL-1 69.38 2.84 0.00 51.58 3.97 95.01 48.08 4.04 97.36 76.55 2.29 0.00 
HIL-2 79.04 1.79 0.00 74.25 2.07 10.39 73.47 2.09 0.00 74.99 2.21 0.00 
HIL-3 59.21 3.80 28.72 45.14 4.46 98.96 66.31 2.59 60.31 64.92 3.46 0.00 
HIL-4 30.40 6.93 92.82 5.89 7.62 100.00 10.48 6.79 99.74 29.46 6.37 100.00 
HIL-5 79.56 1.90 0.00 77.94 1.84 0.00 71.89 2.27 0.00 72.93 2.38 0.00 
HIL-6 --- --- --- 67.09 2.57 5.87 74.65 2.15 0.00 76.96 2.29 0.00 
HIL-7 79.25 1.91 0.00 119.65 -1.51 33.20 50.31 3.90 93.80 87.44 1.23 0.00 
HIL-8 42.01 5.32 82.06 29.06 5.49 100.00 20.39 6.20 100.00 56.44 4.26 14.36 
HIL-9 81.80 1.79 0.00 74.64 2.12 0.00 73.85 2.10 0.00 80.25 1.78 0.00 

HIL-10 89.39 1.01 0.00 84.75 1.23 0.00 78.55 1.69 0.00 88.23 1.05 0.00 
HIL-11 90.92 0.83 0.00 82.36 1.39 0.00 86.35 1.11 0.00 86.08 1.48 7.63 
MAN-1 25.03 6.47 100.00 14.54 6.77 100.00 7.19 7.21 100.00 34.73 6.77 88.54 
MAN-2 65.78 3.02 50.13 76.30 1.82 46.35 52.08 3.66 64.14 72.49 2.68 11.86 
MAN-3 97.15 0.27 0.00 61.78 3.18 30.57 80.26 1.61 0.80 79.97 2.06 0.00 
PAS-1 55.03 3.97 79.95 61.30 3.17 52.91 65.54 2.82 0.00 50.74 4.63 78.40 
PAS-2 36.28 5.65 100.00 37.26 5.20 100.00 20.61 6.22 100.00 30.36 6.30 100.00 
PAS-3 60.47 3.59 0.00 60.08 3.37 33.77 41.60 4.79 100.00 57.20 4.22 26.75 
PAS-4 45.99 4.76 100.00 51.59 4.00 100.00 48.23 4.26 100.00 45.11 5.13 100.00 
PAS-5 54.90 3.97 68.78 62.27 3.09 47.49 66.54 2.74 0.00 43.61 5.25 100.00 
PIN-1 87.72 1.13 0.00 81.88 1.47 0.00 85.86 1.08 0.00 84.80 1.30 0.00 
PIN-2 46.68 4.73 61.48 19.59 6.21 95.10 9.56 6.69 100.00 11.70 7.69 100.00 
PIN-3 36.53 6.13 86.61 9.78 7.36 100.00 11.87 6.75 100.00 7.83 8.39 100.00 
POL-1 69.97 2.88 5.46 52.45 3.83 73.74 55.32 3.40 67.01 78.35 1.91 0.00 
POL-2 100.07 -0.01 0.00 47.83 3.91 62.27 68.37 2.25 58.18 81.03 1.59 43.23 
POL-3 59.50 3.51 10.08 23.96 5.93 100.00 34.65 5.21 100.00 62.24 3.62 0.00 
POL-4 --- --- --- 34.62 5.09 100.00 44.39 4.40 100.00 76.21 2.23 0.00 
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Nutrients and Chlorophyll-a 
 

In this study nutrient and chlorophyll-a data are used as antecedent variables, 

included to help explain the observed relationships between dissolved oxygen regimes 

and LDI scores, representing the gradient of human disturbance.  Table 8 presents the 

range and mean nutrient and chlorophyll-a data collected at all stations.   

Nitrate+Nitrite (N+N) ranged from 0.002 to 1.28 mg/L across all 26 stations with 

a mean of 0.25 mg/L.  Total Kjeldahl nitrogen (TKN), the sum of organic nitrogen and 

ammonia, ranged from 0.47 to 1.76 mg/L, with a mean of 1.01 mg/L at all stations.  Total 

nitrogen (sum of nitrate+nitrite and TKN) at all stations, with the exception of station 

HIL-5, was dominated by TKN, indicating a predominance of organic nitrogen over other 

forms.  Total nitrogen (TN) ranged from 0.58 to 2.05 mg/L with a mean of 1.30 mg/L at 

all stations.  In the quarterly samples collected during this assessment, mean total 

phosphorus (TP) ranged from 0.06 to 0.78 mg/L with a mean of 0.27 mg/L.  Mean 

chlorophyll-a concentrations (corrected for phaeophytin) ranged from a low of 0.28 to a 

high of 19.08 µg/L during thus study, with a mean of 2.9 µg/L.   
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Table 8. Mean and range values for nutrients and chlorophyll-a, west-central Florida, 2005 – 2006. 
Nitrate+Nitrite               

(mg/L) 
Total Kjeldahl Nitrogen     

(mg/L) 
Total Nitrogen           

(mg/L) 
Total Phosphorus    

(mg/L) 
Chlorophyll-a            

(µg/L) Station      
ID 

Mean Range Mean Range Mean Range Mean Range Mean Range 
HIL-1 0.15 0.04 - 0.33 1.23 0.98 - 1.46 1.35 1.1 - 1.77 0.27 0.17 - 0.37 8.26 0.05 - 16.0 
HIL-2 0.38 0.08 - 0.57 0.85 0.75 - 1.02 1.19 0.92 - 1.38 0.15 0.09 - 0.21 0.76 0.05 - 2.0 
HIL-3 0.24 0.14 - 0.34 1.02 0.72 - 1.35 1.26 0.89 - 1.49 0.08 0.04 - 0.13 1.65 1.1 - 2.7 
HIL-4 0.01 0.002 - 0.02 1.29 0.47 - 2.14 1.50 1.08 - 2.14 0.22 0.04 - 0.37 2.83 0.5 - 7.5 
HIL-5 1.28 0.97 - 1.5 0.47 0.29 - 0.76 1.74 1.36 - 1.93 0.16 0.11 - 0.23 0.33 0.05 - 1.1 
HIL-6 0.90 0.3 - 1.23 1.12 0.8 - 1.44 2.01 1.74 - 2.34 0.39 0.24 - 0.64 3.03 1.1 - 6.9 
HIL-7 0.06 0.01 - 0.1 0.89 0.58 - 1.22 0.98 0.66 - 1.26 0.23 0.14 - 0.36 1.25 0.5 - 2.1 
HIL-8 0.02 0.002 - 0.03 1.27 0.56 - 2.64 1.46 0.63 - 2.67 0.23 0.09 - 0.55 3.53 1.3 - 6.4 
HIL-9 0.28 0.21 - 0.36 0.74 0.57 - 1.04 1.05 0.92 - 1.25 0.66 0.49 - 0.8 1.21 0.05 - 2.1 

HIL-10 0.06 0.04 - 0.07 0.68 0.52 - 0.84 0.77 0.58 - 0.91 0.44 0.32 - 0.61 3.48 0.5 - 7.5 
HIL-11 0.59 0.19 - 0.95 0.62 0.4 - 0.82 1.33 1.04 - 1.71 0.45 0.29 - 0.57 0.81 0.05 - 1.6 
MAN-1 0.002 0.002 - 0.002 1.38 1.15 - 1.56 1.43 1.38 - 1.56 0.35 0.22 - 0.52 1.84 0.05 - 5.3 
MAN-2 0.22 0.17 - 0.3 0.75 0.52 - 1.14 1.01 0.7 - 1.44 0.22 0.13 - 0.38 1.73 0.5 - 4.3 
MAN-3 0.50 0.11 - 1.56 1.24 0.72 - 1.79 1.87 0.83 - 3.35 0.78 0.59 - 0.94 0.98 0.5 - 1.2 
PAS-1 0.08 0.02 - 0.13 0.63 0.22 - 0.87 0.70 0.31 - 0.89 0.06 0.05 - 0.06 0.28 0.05 - 0.5 
PAS-2 0.02 0.002 - 0.03 1.60 1.21 - 1.99 1.71 1.39 - 1.99 0.09 0.06 - 0.16 0.91 0.05 - 2.0 
PAS-3 0.02 0.002 - 0.05 1.48 0.84 - 2.27 1.65 1.21 - 2.27 0.09 0.04 - 0.13 1.28 0.5 - 2.1 
PAS-4 0.06 0.04 - 0.08 0.68 0.58 - 0.84 0.58 0.04 - 0.88 0.06 0.05 - 0.06 0.41 0.05 - 0.6 
PAS-5 0.08 0.02 - 0.13 0.74 0.3 - 0.99 0.80 0.41 - 1.01 0.07 0.05 - 0.09 0.31 0.05 - 1.1 
PIN-1 0.56 0.14 - 1.58 0.76 0.56 - 0.93 1.41 0.76 - 2.51 0.49 0.31 - 0.72 0.68 0.5 - 1.2 
PIN-2 0.05 0.002 - 0.18 0.78 0.62 - 0.87 0.84 0.62 - 1.02 0.14 0.1 - 0.21 2.70 0.7 - 5.3 
PIN-3 0.05 0.01 - 0.12 1.76 0.8 - 4.32 2.05 0.9 - 4.33 0.35 0.18 - 0.82 3.40 1.6 - 4.8 
POL-1 0.45 0.17 - 0.63 1.20 1.03 - 1.49 1.69 1.29 - 2.12 0.46 0.37 - 0.59 7.75 4.3 - 10.7 
POL-2 0.09 0.02 - 0.23 1.26 0.92 - 1.7 1.25 1.0 - 1.49 0.35 0.23 - 0.52 19.08 5.0 - 39.2 
POL-3 0.08 0.02 - 0.16 0.76 0.52 - 0.94 0.85 0.68 - 0.96 0.09 0.04 - 0.16 0.93 0.5 - 1.1 
POL-4 0.21 0.08 - 0.31 0.99 0.84 - 1.17 1.20 0.99 - 1.48 0.12 0.08 - 0.18 5.95 3.2 - 8.5 
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Stream Condition Index (SCI) 
 

Macroinvertebrate assemblages are quantified using the Stream Condition Index 

(SCI) to assess the biological integrity of the stream reaches in this study.  SCI scores 

were calculated for each stream reach twice during the sampling period (2005-2006) and 

results are presented in Table 9.  Macroinvertebrate samples were collected once during 

the summer months (Quarter 2) and once during the winter months (Quarter 4).  At 

station PIN-3, only the SCI conducted during Quarter 2 resulted in useable data. 

During the summer of 2005 SCI scores ranged from a low of six (POL-1) to a 

high of 61 (HIL-5).  Eighteen of the 26 stations assessed during the summer are 

categorized as “impaired” according to Fore et al. (2007).  The remaining eight stations 

were categorized as “healthy.”  SCI scores calculated during the winter months (Quarter 

4) ranged from 11 (POL-1) to 71 (HIL-5) with the high and low scores occurring at the 

same stations as the summer scores.  Fifteen stations fall in the “impaired” category, with 

another nine categorized as “healthy,” and one station rated as “exceptional” (Fore et al. 

2007).  Twelve of the stations in this study had SCI scores that fell in the “impaired” 

category during both of the assessments conducted.  



www.manaraa.com

 

 40

Table 9. Stream Condition Index scores and aquatic life use categories, west-central 
Florida, 2005 – 2006. 

Stream Condition Index 

Summer (Quarter 2) Winter (Quarter 4) Station ID 

Score Aquatic Life Use 
Category* Score Aquatic Life Use 

Category* 

HIL-1 16 impaired 13 impaired 

HIL-2 28 impaired 35 healthy 

HIL-3 44 healthy 34 impaired 

HIL-4 10 impaired 25 impaired 

HIL-5 61 healthy 71 exceptional 

HIL-6 41 healthy 34 impaired 

HIL-7 31 impaired 26 impaired 

HIL-8 19 impaired 24 impaired 

HIL-9 47 healthy 52 healthy 

HIL-10 41 healthy 46 healthy 

HIL-11 53 healthy 46 healthy 

MAN-1 19 impaired 35 healthy 

MAN-2 33 impaired 22 impaired 

MAN-3 23 impaired 32 impaired 

PAS-1 30 impaired 40 healthy 

PAS-2 11 impaired 18 impaired 

PAS-3 23 impaired 36 healthy 

PAS-4 50 healthy 44 healthy 

PAS-5 29 impaired 31 impaired 

PIN-1 26 impaired 18 impaired 

PIN-2 12 impaired 14 impaired 

PIN-3 7 impaired --- --- 

POL-1 6 impaired 11 impaired 

POL-2 11 impaired 29 impaired 

POL-3 39 healthy 30 impaired 

POL-4 25 impaired 53 healthy 
* Source - (Fore et al. 2007) 
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ANALYSIS AND DISCUSSION 
 

 This chapter provides the analyses of the data collection effort for this study.  

Relationships between intensity of human land use, dissolved oxygen, nutrients, 

chlorophyll-a, and stream biological integrity are discussed.  Correlation analyses were 

successful in indentifying these relationships and provide insight into causative factors 

affecting dissolved oxygen regimes in the subject streams. 

Dissolved Oxygen, Nutrients, and Chlorophyll-a 
 

Correlation analysis serves to identify relationships between the variables and 

better understand how intensity of human land uses affects dissolved oxygen regimes in 

streams.  Table 10 presents the Spearman rank order correlation values calculated for 

LDI, dissolved oxygen, and nutrient concentrations over the year long study.  Significant 

correlations (p < 0.05) are in bold.   

 
Table 10. Spearman correlations for dissolved oxygen, LDI, nutrients, and chlorophyll-a 

concentrations, west-central Florida, 2005 – 2006. 

Parameter LDI TKN N+N TN TP Chlorophyll-
a 

LDI   0.04 0.24 0.09 0.32 0.28 
DOM 0.11 -0.33 0.58 -0.01 0.28 -0.15 
DOR 0.54 0.24 -0.08 0.08 0.29 0.56 
DOD -0.16 0.27 -0.6 -0.03 -0.38 0.09 

DO% < 5 -0.14 0.28 -0.6 -0.07 -0.29 0.17 
Bold values indicate significant correlations (p < 0.05) 
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 As the table shows, mean DO range was the only measure of dissolved oxygen 

significantly correlated (Spearman r = 0.54, p < 0.001) with the LDI scores when 

evaluated over all quarters.  Diel variation in dissolved oxygen increased with increasing 

intensity of human land use in the surrounding watershed (Figure 4).  This is not 

surprising as other studies have linked increased diel variation in streams to 

anthropogenic sources such as increased impervious area (Walsh et al. 2005).  Catchment 

imperviousness has been linked to reduced baseflow and flashier hydrographs leading to 

increased diel variation in urban settings (Meyer et al. 2005 and Walsh et al. 2005).  Land 

uses with higher LDI scores can be expected to experience higher amounts of catchment 

imperviousness as well as greater effects of point and non-point source runoff.  

Monitoring stations with LDI scores < 2 (reference streams) showed diel variations 

generally less than 2.0 mg/L during all quarters, indicating relatively stable oxygen 

concentrations throughout the day and night (see Figure 4).   

 The other measures of dissolved oxygen in this study (mean concentration, mean 

deficit, and percent of exceedances) did not correlate with the gradient of human 

disturbance (LDI) when all stations were viewed over all quarters.  As expected, mean 

dissolved oxygen values tend to be lower during the warmer months (quarters 2 and 3) at 

all stations, although viewing the measures of dissolved oxygen on a quarterly basis did 

not produce any significant results with respect to LDI scores. 
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Figure 4. Mean dissolved oxygen range (DOR) for each deployment and LDI score 
over all quarters. 

 

Mean dissolved oxygen (DOM) calculated over each four day deployment 

generally exceeded Florida’s fresh water quality standard (5.0 mg/L) at the reference 

stations in this study (HIL-8, MAN-1, PAS-3, PAS-4, PAS-5, and POL-3) during most 

quarters (Figure 5).  These stations, as determined by the LDI score, are those in areas 

with the least non-renewable energy consumption and exhibit natural conditions with 

little to no impact from human activities (Brown and Vivas 2005).  The majority of the 

reference streams are dominated by heavy canopy cover (PAS-3, PAS-4, PAS-5, and 

POL-3) and reduced sunlight penetration can lead to reduced photosynthesis in the 

aquatic system causing lower overall dissolved oxygen values compared to more open 

systems (Roy et al. 2005).  The data support this claim showing a significant positive 
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correlation between LDI score and chlorophyll-a concentrations (see Table 10).  Another 

of the reference stations (MAN-1), has an open canopy, but is located immediately 

downstream of a large groundwater fed wetland system which serves as the stream’s 

headwaters.  Groundwater wetland systems typically have low dissolved oxygen and this 

most likely explains the low overall mean oxygen concentration recorded at this reference 

station.  These data indicate the natural systems identified in this study, through the use 

of the LDI scores, may be characterized as impacted for dissolved oxygen even though 

human activity and influence in these catchments is expected to be very low. 

Mean dissolved oxygen values calculated from monitoring stations with high LDI 

scores (LDI scores 6 – 9) also exceeded the state standard on the majority of occasions 

(see Figure 5).  Land uses represented by these LDI scores tend to indicate high intensity 

agriculture, medium to high density residential, low intensity commercial, and industrial 

(Brown and Vivas 2005).  While these stations typically exhibit less canopy cover than 

the reference stations, the overall low oxygen concentrations (below the standard) 

observed during most quarters is likely the result of physical alterations to stream 

channels, such as channelization (described below), in areas of more intense human land 

use.   
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Figure 5. Mean dissolved oxygen (DOM) values for each deployment and LDI score 
over all quarters. 

 

Monitoring stations represented by LDI scores along the middle of the gradient 

(LDI scores 2 – 6) generally had higher mean oxygen values during all quarters than the 

reference or high human intensity stations.  The land uses in this category tend to be 

dominated by agriculture including pasture, citrus and row crops (Brown and Vivas 

2005).  The stream systems located in agriculture dominated areas tend to have little to no 

canopy cover and receive direct sunlight allowing for increased photosynthesis compared 

to more shaded systems leading to increased overall DO.  In addition, these streams are 

subject to increased groundwater inputs from irrigation which may be clearer allowing 

for less light attenuation.   
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An evaluation of nutrient concentrations was included in this study to determine if 

nutrients could help explain shifts in dissolved oxygen regimes as a result of increasing 

human disturbance.  As previously mentioned, many studies have linked excess nutrients 

to anthropogenic sources and urban land uses, as well as depletion of oxygen in aquatic 

systems (Mallin et al 2006, MacPerson et al 2007, National Research Council 2000, 

Wang et al 2003, and Wilcock 1986).  In this study the LDI scores were not significantly 

correlated with TKN (organic nitrogen and ammonia) or total nitrogen (see Table 10).  

Significant positive correlations (p < 0.05) were observed between LDI and inorganic 

nitrogen (N+N) (Spearman r = 0.24, p = 0.01) and TP (Spearman r = 0.32, p = 0.001).  

Although only a weak correlation was observed in this data set, the findings coincide 

with previous studies showing increased nutrient concentrations in watersheds of 

increasing intensity of human activity.   

Measures of dissolved oxygen were significantly correlated with nutrient 

concentrations, with the exception of total nitrogen (see Table 10); suggesting nutrient 

concentrations play a significant role in the dissolved oxygen regime of an aquatic 

system.  TKN was significantly correlated with measures of dissolved oxygen when 

viewing all deployments over all quarters.  TKN was negatively correlated with mean 

dissolved oxygen and positively correlated with the DO range, oxygen deficit, and the 

percentage of exceedances.  This is not an unexpected finding as increasing organic 

nitrogen leads to increased demand for oxygen and therefore reduced DO levels.  The 

increased demand for oxygen can also explain the positive correlations between oxygen 

deficit and TKN (Spearman r = 0.27, p = 0.006) as well as percentage of exceedances and 

TKN (Spearman r = 0.28, p = 0.004). 
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Significant results were obtained by evaluated inorganic nitrogen with measures 

of dissolved oxygen.  When comparing all deployments over all quarters, inorganic 

nitrogen showed a strong positive correlation with mean dissolved oxygen (Spearman r = 

0.58, p < 0.001) (Figure 6) and strong negative correlations with mean oxygen deficit 

(Spearman r = -0.60, p < 0.001) and percentage of exceedances (Spearman r = -0.60, p < 

0.001).  The majority of nitrate+nitrite reported in this study was in the form of nitrate, 

indicating nitrification was occurring to breakdown toxic nitrite into nitrate.  The 

nitrification process requires oxygen and therefore it is not surprising to find increased 

levels of nitrate when the availability of oxygen is also increased.  The strong negative 

correlation between nitrate+nitrite and oxygen deficit and percentage of exceedances 

further indicates the presence of adequate oxygen allowing for the conversion of nitrite to 

nitrate.  The presence of strong correlation between measures of oxygen and inorganic 

nitrogen does not indicate the nitrogen is in any way causing increased oxygen, but 

rather, the availability of oxygen allows for the breakdown of toxic nitrite into less toxic 

nitrate.   
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Figure 6. Mean dissolved oxygen (DOM) and nitrate+nitrite values for each 
deployment over all quarters. 

 

Total phosphorus (TP) was correlated with the LDI scores as well as all measures 

of dissolved oxygen used in this study.  The mean dissolved oxygen concentration 

recorded over each deployment and the mean dissolved oxygen range showed a 

significant positive correlation with total phosphorus concentrations (Spearman r = 0.28 

and 0.29, p = 0.005 and 0.003, respectively).  In addition, the mean oxygen deficit and 

percentage of exceedances showed a significant negative correlation with TP (Spearman r 

= -0.38 and -0.29, p = < 0.001 and 0.004, respectively).  The reason for these significant 

correlations is likely linked to primary production and is supported in the data.  

Chlorophyll-a concentrations were significantly correlated with TP concentrations 

(Spearman r = 0.32, p = 0.01).  Phosphorus is generally considered to be the limiting 
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nutrient for phytoplankton growth in freshwater systems (Hecky and Kilham 1988 and 

Mallin et al. 2004).  Therefore it is appropriate to assume that as phosphorus 

concentrations observed in this study increase, the ability of phytoplankton to bloom also 

increases.  While chlorophyll-a concentrations were not correlated with the overall mean 

oxygen values in this study, chlorophyll-a showed a significant positive correlation with 

the mean oxygen range (Spearman r = 0.56, p < 0.001).  Photosynthesis during the day 

and respiration at night by phytoplankton communities results in large diel swings in 

dissolved oxygen.  These variations can have a significant effect on the oxygen regime of 

a stream system and can help to explain the correlation between dissolved oxygen and 

phosphorus observed in this study.   

 Phosphorus and chlorophyll-a concentrations were also positively correlated with 

LDI scores (Spearman r = 0.32 and 0.28, p = 0.001 and 0.005, respectively) indicating a 

link between the intensity of human land use, phosphorus inputs, and subsequent increase 

in primary production.  This relationship helps to explain the link between the diel 

variation (DOR) observed and LDI scores.  As the intensity of land use increases 

phosphorus inputs to stream systems through point and non-point sources such as 

agriculture and urban runoff also increase, resulting in increased primary production 

which, in turn, increases the diel range of dissolved oxygen values.  This relationship in 

conjunction with the increased catchment imperviousness expected with higher LDI 

scores, work together to explain the observed relationship between LDI, nutrients, and 

dissolved oxygen.   

  



www.manaraa.com

 

 50

The Role of Stream Morphology 
 

As previously explained, the calculation of the LDI score is based on non-

renewable energy flow and does not directly account for physical alterations to stream 

systems that may occur as a result of human activity in a watershed.  In fact, the stream 

itself is not included in the LDI calculation.  Previous studies have linked altered channel 

morphology to degradation in water quality including dissolved oxygen (Brilly et al. 

2006, Meyer et al. 2005, Paul and Meyer 2001, and Walsh et al. 2005).  It is not possible 

for the LDI calculation to account for stream morphology other than to suggest that 

higher LDI scores are more likely to occur in places where the stream channel has been 

altered as a result of increased human activity.  In order to account for differences in 

dissolved oxygen regimes that occur as a result of physical alterations to stream 

morphology, the dataset presented in this study was separated into non-channelized and 

channelized systems.  Each subset of the data was then subjected to the same correlation 

analyses presented above to determine if stream morphology significantly alters the 

relationship between dissolved oxygen and intensity of human land uses.   

Fifteen of the 26 stations fall into the non-channelized category with at least one 

station found in each county included in this study.  Four of the six reference stations 

(LDI score < 2.0) are non-channelized and only two stations have LDI scores above 5.0 

(HIL-2 – 5.35 and PIN-1 – 7.61).  Non-channelized systems tend to fall on the lower end 

of the LDI scale while the channelized systems tend to fall on the higher end of the scale 

(Table 11).  Eleven of the 26 stations were channelized and included two of the reference 

stations (HIL-8 – 1.38 and MAN-1 – 1.42).  MAN-1 is located in Manatee County, FL 
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and drains a large tract of wetland area with little human activity.  Although MAN-1 is a 

channelized stream at the station location, the majority of the upstream basin for which 

the LDI was calculated encompasses wetland areas described as freshwater marshes and 

wet prairies by FLUCCS (see Appendix A).  Station HIL-8 is located along Delany Creek 

in Hillsborough County, FL and is included as a channelized stream because the system 

is altered to include a retention basin at the station location.  However, the headwaters of 

Delany Creek are located just upstream of the sampling location and therefore the LDI 

could only be calculated for a short distance of the upstream basin and only included an 

approximate 96,000+ square meters of area (see Appendix A).  In contrast, LDI 

calculations in stream systems for which the entire 10km of upstream basin can be 

calculated encompass 2,000,000 square meters.  The area of influence for which the LDI 

was calculated was dominated by shrub and brushland and conifer mixed hardwood.  

This resulted in a channelized system (HIL-8) with one of the lowest LDI scores in this 

project.  The rest of the channelized streams had LDI scores ranging from 4.15 (HIL-1) to 

8.60 (PIN-3).   



www.manaraa.com

 

 52

Table 11. Breakdown of LDI scores for channelized and non-channelized streams, west-
central Florida, 2005 – 2006.  

Non-Channelized Channelized 
Station ID LDI Score Station ID LDI Score 

HIL-2 5.35 HIL-1 4.15 
HIL-5 2.59 HIL-3 6.72 
HIL-6 4.00 HIL-4 7.22 
HIL-9 2.91 HIL-7 4.84 

HIL-10 2.68 HIL-8 1.38 
HIL-11 2.07 MAN-1 1.42 
MAN-3 3.46 MAN-2 7.73 
PAS-1 2.09 PIN-2 6.83 
PAS-2 2.05 PIN-3 8.60 
PAS-3 1.45 POL-1 5.20 
PAS-4 1.84 POL-2 7.18 
PAS-5 1.70 
PIN-1 7.61 
POL-3 1.23 
POL-4 2.29 

 

 

This exercise illustrates significant differences in the behavior of dissolved 

oxygen in channelized and non-channelized streams.  In addition, it provides valuable 

insight into understanding the relationship between dissolved oxygen and the intensity of 

human land use.  Figure 7 presents the mean oxygen concentrations and LDI scores 

separated into channelized and non-channelized systems, while Table 12 provides the 

results of correlation analyses.  As Figure 7 indicates, non-channelized streams tend to be 

concentrated on the lower end of the LDI scale, representing areas of less intense land 

use.  In contrast, the channelized systems in this study tend to concentrate on the higher 

end of the LDI scale, indicating channelized streams are more likely to be found in areas 

of higher intensity land use.  While this result is not surprising, it is important to note as 

this relationship plays an important role in understanding how dissolved oxygen is 

affected by increasing intensity of human land use.
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Figure 7. Mean dissolved oxygen concentrations (DOM) and LDI scores for non-
channelized and channelized streams over all quarters in west-central 
Florida. 
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Table 12. Spearman rank order correlations for dissolved oxygen, LDI, nutrients, and chlorophyll-a concentrations in non-
channelized and channelized streams, west-central Florida, 2005 – 2006. 

LDI TKN N+N TN TP Chlorophyll-a 
  Non-

Chan Chan Non-
Chan Chan Non-

Chan Chan Non-
Chan Chan Non-

Chan Chan Non-
Chan Chan 

LDI     -0.03 -0.19 0.61 0.16 0.27 -0.12 0.68 -0.07 0.13 0.03 

DOM 0.6 -0.15 -0.34 -0.19 0.58 0.57 0.07 -0.04 0.6 -0.07 0.09 0.01 

DOR 0.51 0.3 0.12 -0.25 0.24 0.26 0.16 -0.19 0.41 0.03 0.45 0.24 

DOD -0.66 0.08 0.26 0.11 -0.53 -0.61 -0.05 -0.03 -0.68 -0.04 -0.1 -0.13 

DO% < 5 -0.57 0.06 0.26 0.19 -0.6 -0.57 -0.13 0.01 -0.5 0.13 -0.02 -0.03 

Non-Chan - Non-Channelized Stream 

Chan - Channelized Stream 

Bold values indicate significant correlations (p < 0.05) 
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When viewing non-channelized systems, all measures of dissolved oxygen 

showed strong significant correlations with LDI scores (Table 12).  Mean dissolved 

oxygen (Figure 7) and mean dissolved oxygen range showed strong positive correlations 

(Spearman r = 0.6 and 0.51, respectively, p < 0.001), while mean oxygen deficit and 

percentage of exceedances showed strong negative correlations (Spearman r = -0.66 and -

0.57, respectively, p < 0.001).  The same relationship was not observed in the 

channelized streams.  As Figure 7 shows, mean dissolved oxygen was not correlated with 

LDI scores for the channelized streams.  The LDI only showed a significant correlation 

with mean oxygen range (Spearman r = 0.3, p = 0.04), similar to viewing all stations 

together.  Two channelized systems (HIL-8 and MAN-1, described above) are outliers, 

with low LDI scores.  However, with these two stations removed the correlation between 

dissolved oxygen and LDI is no more significant than with the outliers included.  This 

indicates a much stronger relationship is evident between oxygen and intensity of human 

land use in streams that have not been physically altered.  In non-channelized systems, as 

land uses become more intense with human activity the overall concentrations of 

dissolved oxygen increase, fluctuate closer to the saturation level, and fewer exceedances 

of Florida’s state water quality standard are observed.  The same relationship was 

observed for each quarter and no significant seasonal differences were identified. 

The data indicate nutrients play an important role in understanding the 

relationship between dissolved oxygen and LDI score in the non-channelized and 

channelized systems.  Inorganic nitrogen and total phosphorus in the non-channelized 

systems were positively correlated with LDI scores (Spearman r = 0.61 and 0.68, 

respectively, p < 0.001).  Nutrient data collected from channelized streams were not 
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correlated with LDI score in any case.  This likely indicates the relationship between 

nutrients and intensity of human land use is more evident when the channel of a stream 

has not been altered.   

 Measures of dissolved oxygen showed significant correlations to nutrient 

concentrations, especially in the non-channelized streams.  TKN (organic nitrogen and 

ammonia) was correlated with mean dissolved oxygen (Spearman r = -0.34, p = 0.01) and 

oxygen deficit (Spearman r = 0.26, p = 0.048) in the non-channelized systems, but was 

not correlated in the channelized streams.  Inorganic nitrogen (N+N) showed a strong 

correlation with most measures of dissolved oxygen in both the non-channelized and 

channelized streams (see Table 12).  These results are consistent with viewing all stations 

together. 

 Total phosphorus showed no relationship with measures of dissolved oxygen in 

the channelized systems, but showed strong correlations in the non-channelized streams.  

Total phosphorus showed a strong positive correlation with mean dissolved oxygen 

values and mean oxygen range (Spearman r = 0.6 and 0.41, p < 0.001 and p = 0.001, 

respectively) while exhibiting a strong negative correlation with mean oxygen deficit and 

percentage of exceedances (Spearman r = -0.68 and -0.50, p < 0.001, respectively).  This 

relationship between dissolved oxygen and phosphorus concentrations is similar to that 

observed when viewing all stations together, although the correlations in non-channelized 

systems were much stronger.   

As previously described, phosphorus is typically the limiting nutrient in 

freshwater systems and is responsible for the growth and bloom of phytoplankton and 

other aquatic plant communities.  In the non-channelized systems phosphorus 
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concentrations were significantly positively correlated with chlorophyll-a concentrations 

(Spearman r = 0.30, p = 0.02).  As a result, the chlorophyll-a concentrations show a 

strong relationship with the diel variation (DOR) in non-channelized streams (Spearman r 

= 0.45, p < 0.001) from the photosynthetic and respiratory functions of microbial and 

algal communities.  This relationship helps to explain the correlation between the mean 

oxygen range, phosphorus, and chlorophyll observed in this study and may also help to 

explain the correlation between other measures of oxygen and phosphorus.  Research 

indicates as algal communities produce and consume oxygen through normal metabolic 

processes, they typically produce more oxygen during photosynthesis than they consume 

during dark respiration resulting in a net increase in oxygen concentration (Platt 1981).  

An increase in algal community as a result of increased phosphorus inputs to streams 

could therefore help to explain the relationship between phosphorus and dissolved 

oxygen observed.  The sestonic chlorophyll-a data used in this study only partially 

exhibit this relationship (see Table 12), however studies have indicated sestonic 

chlorophyll concentrations may not be the appropriate method to fully explore these 

scenarios (Morgan et al. 2006).  Morgan et al. (2006) suggest biomass of filamentous 

algae may be a better indicator of primary production, and further research should be 

conducted to determine if this variable provides more significant relationships in this data 

set. 

 Stream morphology has shown to be a significant factor in identifying 

relationships between dissolved oxygen and human land use intensity.  The non-

channelized streams located throughout west-central Florida used in this project show a 

significant relationship between dissolved oxygen and the intensity of human land use.  
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Measures of oxygen, with the exception of mean dissolved oxygen range, seem to show 

improvement as the intensity of human land use in the surrounding watershed increases.  

With increasing LDI scores the overall mean dissolved oxygen value increases and the 

mean oxygen deficit and percent of exceedances decreases.  Total phosphorus seems to 

pay an important role in understanding this relationship.  Increased primary production as 

a result of increased phosphorus inputs in land uses of more intense human activity seem 

to account for at least some of the relationship between dissolved oxygen and LDI scores.  

The same relationship was not apparent in the channelized systems.  The physical 

alteration of channelized streams (such as straight, deep, incised channels) can have 

significant affects on dissolved oxygen and may obscure the relationship between 

dissolved oxygen, nutrients, and chlorophyll-a.  Other physical factors affecting 

dissolved oxygen in channelized streams were not included in this study and therefore 

cannot be fully explored.  However, the relationships observed here indicate that nutrient 

inputs as well as physical alteration of the stream channel are significant factors affecting 

dissolved oxygen along a gradient of human disturbance.   

Biological Integrity of Streams 
 

 The Stream Condition Index (SCI) is an index of biological integrity using in-

stream and riparian habitat conditions and stream macroinvertebrate assemblages.  The 

SCI was conducted at each station during quarters two and four, allowing for 

characterization of summer and winter macroinvertebrate assemblages.  Fore (2004) has 

shown a significant negative correlation between the LDI score and the SCI.  In-stream 

biological integrity is evaluated against the intensity of human land use in this study to 
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determine if the same relationship observed by Fore (2004) is evident in this data set.  

The SCI is also evaluated against measures of dissolved oxygen to identify if altered 

oxygen regimes, as a response to intense human land use, have an effect on the biological 

integrity of stream systems in west-central Florida.   

 Table 13 presents the Spearman rank order correlations observed between the 

LDI, SCI, and measures of dissolved oxygen in this study.  Stations were evaluated 

overall, as well as separated into channelized and non-channelized streams.  In addition 

to using the overall SCI score, four of the metrics used to calculate the SCI (total taxa, 

sensitive taxa, percent very tolerant taxa, and percent dominant taxon) were also 

evaluated against the LDI score and dissolved oxygen.  These metrics were chosen 

because they are expected to be more sensitive to effects of changes in dissolved oxygen 

in response to intense human land use than other metrics. 
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Table 13. Overall, channelized and non-channelized Spearman rank order correlations for dissolved oxygen, LDI, and biological 
integrity, west-central Florida, 2005 – 2006. 

SCI Total Taxa Sensitive Taxa % Very Tolerant Taxa % Dominant Taxon 

  
Overall Non-

Chan Chan Overall Non-
Chan Chan Overall Non-

Chan Chan Overall Non-
Chan Chan Overall Non-

Chan Chan 

LDI -0.33 -0.01 -0.17 -0.01 0.36 -0.15 -0.4 -0.05 -0.14 0.37 0.11 0.08 -0.09 -0.29 -0.16 

DOM 0.41 0.37 0.4 0.16 0.17 0.2 0.2 0.24 -0.06 -0.14 -0.13 0.16 -0.26 -0.29 -0.18 

DOR -0.43 -0.2 0.12 -0.11 -0.17 0.03 -0.46 -0.14 -0.11 0.46 0.19 -0.03 0.18 0.24 0.05 

DOD -0.4 -0.34 -0.29 -0.17 -0.16 -0.2 -0.2 -0.22 0.08 0.15 0.09 -0.11 0.27 0.33 0.14 

DO% < 5 -0.4 -0.39 -0.24 -0.15 -0.26 -0.04 -0.25 -0.28 -0.01 0.19 0.14 -0.12 0.21 0.27 0.05 

Non-Chan - Non-Channelized Stream 

Chan - Channelized Stream 

Bold values indicate significant correlations (p < 0.05) 
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SCI scores showed a significant negative correlation with the LDI (Spearman r = -

0.33, p = 0.02) when viewing all stations together indicating the biological integrity of 

stream systems is negatively affected by increasing intensity of human land use (Figure 

8).  Fore (2004) reported the same relationship, however the strength of the correlation in 

her work was stronger (Spearman r = -0.60, p < 0.01).  The reason for the weaker 

correlation observed in this study is unknown, but may be related to the much smaller 

data set used than reported by Fore (2004).  Seasonality seemed to play a role in this 

relationship as well.  The SCI showed a significant negative correlation with LDI 

(Spearman r = -0.4, p = 0.047) in samples collected from quarter 4 (winter) while the 

quarter 2 collection (summer) showed no significant relationship.  The LDI score also 

showed a significant negative correlation with the number of sensitive taxa (Spearman r = 

-0.4, p = 0.003) and a positive correlation with the percent of very tolerant taxa 

(Spearman r = 0.37, p = 0.008).  This indicates a reduction in the most sensitive taxa and 

increase in tolerant macroinvertebrate species in stream systems located in areas of 

increasing human impact.  These findings coincide with other studies showing reduced 

biological integrity in watersheds with increased human influence (Fore 2004 and 2007).  

When the data set was separated into channelized and non-channelized streams, only the 

number of total taxa collected in non-channelized streams showed a significant 

correlation with LDI scores (Spearman r = 0.36, p = 0.047).  The reason for the positive 

correlation observed is unknown, but raises interest and it may be prudent to conduct 

further investigation into this relationship in the future.  Seasonality did not significantly 

affect the relationships observed in the non-channelized and channelized systems. 
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Figure 8. LDI and overall SCI scores calculated from summer and winter data 
collection efforts. 

 

The data shows a significant relationship exists between the intensity of human 

land use and biological integrity of the stream systems.  It is also apparent in the data that 

dissolved oxygen plays an important role in the biological health of the lotic systems in 

west-central Florida.  All measures of dissolved oxygen were significantly correlated 

with the SCI scores over all stations (see Table 13).  The mean dissolved oxygen value 

showed a positive correlation (Spearman r = 0.41, p = 0.003) with SCI indicating the 

biological health of a stream is positively affected by the amount of oxygen available to 

the community (Figure 9).  As the diel range in oxygen values increased the overall SCI 

score as well as the number of taxa listed as sensitive decreased (Spearman r = -0.43 and 

-0.46, p = 0.001 and p < 0.01, respectively) while the percentage of very tolerant taxa 
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increased (Spearman r = 0.46, p < 0.001).  The mean oxygen deficit was also negatively 

correlated the SCI score (Spearman r = -0.40, p = 0.04) over all stations, while the 

percent of exceedances was negatively correlated with SCI over all stations and in the 

non-channelized streams (Spearman r = -0.40 and -0.39, p = 0.004 and p = 0.03, 

respectively).   
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Figure 9. Mean dissolved oxygen (DOM) and SCI scores calculated from summer 
and winter data collection efforts. 

 

While the mean oxygen deficit calculated over a four day deployment is an 

adequate measure of oxygen when compared to the intensity of human land uses, it may 

not be the most ecologically significant measure of oxygen deficit (Dr. Douglas Durbin, 

pers. comm.).  Macroinvertebrates sensitive to oxygen levels are likely to evacuate 
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sections of a stream during times of minimum oxygen concentrations, and are less likely 

to be affected by oxygen deficit when concentrations are higher (Dr. Douglas Durbin, 

pers. comm.).  Therefore, the oxygen deficit calculated during times of minimum oxygen 

concentrations (i.e. nighttime oxygen levels) is a more accurate measure of oxygen that is 

likely to result in affects to macroinvertebrate assemblages.  Figure 10 presents the 

oxygen deficit calculated at the minimum oxygen concentration over each day of 

deployment, for each station, during the summer and winter SCI data collection periods.  

The figure shows a strong negative correlation between SCI and oxygen deficit when 

concentrations are at a minimum.  This relationship was stronger during the summer 

(Spearman r = -0.55, p < 0.001) than the winter (Spearman r = -0.38, p < 0.001)  While 

the mean oxygen deficit calculated over the 4-day deployment period showed a negative 

correlation with SCI score, it is actually the oxygen deficit at the minimum oxygen 

concentration that is driving the lower SCI scores.  These data coincide with previous 

studies that show adequate availability of oxygen significantly impacts the biological 

health of a stream community (Hynes 1960, Giller and Malmqvist 1998, Dodds 2002, 

Connolly et al. 2004, Walton et al. 2007, and Jacobsen 2008).   

The biological integrity of channelized streams in this study showed no 

relationship with the LDI or any measure of dissolved oxygen.  The lack of relationship 

in these systems likely means there are other factors at work affecting biological integrity 

in channelized streams.  Channelization is known to have negative affects on the habitat 

availability, relative abundance, and richness of macroinvertebrates compared to non-

channelized systems (Rohasliney and Jackson 2008, Smiley and Dibble 2008).  

Channelization is expected to occur more frequently in areas of more intense human land 
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use, which is the case in this study where the majority of channelized streams have higher 

LDI scores than non-channelized systems.  While channelization seems to have a 

negative effect on the biological integrity of the streams (this relationship is observed 

when viewing all stations together), increasing the intensity of land use in systems that 

have already been channelized does not seem to be significant.  This shows the 

channelization itself is the human activity causing the negative effect on stream ecology.   
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Figure 10. Dissolved oxygen deficit (DOD) calculated at the minimum oxygen 
concentration for each day of the 4-day deployment, during summer and 
winter data collection efforts. 
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This study shows the intensity of human land use has a negative effect on the 

biological integrity of streams and is consistent with previous studies showing the same 

relationship (Fore 2004 and 2007).  In addition, measures of dissolved oxygen were 

significantly correlated with the SCI indicating the availability and stability of oxygen 

levels also play an important role in the health of the streams in this study.  As previously 

indicated in this chapter, the intensity of human land use has significant effects on 

measures of dissolved oxygen that are also shown to affect the biological integrity of the 

streams.  While many factors associated with human activity in a watershed can affect 

streams, these data show it is important to directly address dissolved oxygen as altered 

oxygen regimes in streams can directly affect the overall health of the system.   
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POLICY IMPLICATIONS 
 

 This research effort provides valuable insight for assessing the impairment status 

of lotic systems for dissolved oxygen in Florida.  The Clean Water Act requires for the 

establishment of protective regulatory criteria known as Total Maximum Daily Loads 

(TMDLs).  A TMDL is defined as the maximum amount of a pollutant the waterbody can 

assimilate and still meet its designated state water quality standards (FDEP 2008).  Water 

bodies known to exceed water quality standards (as determined through Florida’s 

Impaired Waters Rule, Chapter 62-303, F.A.C.) are required to have a TMDL established 

by the State of Florida, or, if the state does not establish a TMDL in a timely manner, the 

US Environmental Protection Agency (EPA) will develop a TMDL instead.   

 In Florida, oxygen depletion and elevated nutrient concentrations are the most 

common parameters of concern in the majority of “impaired” waterbodies (FDEP 2008).  

Currently, the FDEP (2008) lists 248 streams and rivers as verified impaired for dissolved 

oxygen, with the majority of those also impaired for nutrients (nitrogen and/or 

phosphorus) and are slated for TMDL development.  Half of the stations in this study are 

listed as impaired for dissolved oxygen; the other half either not impaired or have not yet 

been assessed.  According to the FDEP (2009) TMDL website, 16 dissolved oxygen 

TMDLs have been finalized throughout the state.  Typically, the determination of a 

TMDL for dissolved oxygen is completed through an assessment of the relationship 

between oxygen and nutrient concentrations.  In each case, the implemented TMDL 
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requires a reduction in overall nutrient loading to a level presumed to be at or below the 

assimilative capacity of the subject stream; which is designed to remove the cause of 

oxygen stress, thereby increasing oxygen concentrations to meet the state water quality 

standard.  This methodology coincides with research previously cited in this text 

indicating the link between increasing nutrient concentrations and decreasing oxygen 

concentrations.  While this relationship is undeniable, the data presented from this 

research effort shows additional antecedent relationships may significantly obscure the 

effectiveness of the TMDL. 

 Oxygen concentrations in this study showed a positive correlation with total 

phosphorus and no correlation with total nitrogen.  This seemed to be the result of an 

increase in primary production driving up the overall concentration of oxygen.  With 

lower nutrient levels, primary production is reduced and thus lower dissolved oxygen 

concentrations are observed.  In the scenario presented by the data in this project a 

reduction in the nutrient inputs to the subject streams would essentially decrease the 

oxygen concentrations giving the appearance of a failed TMDL.  However, as presented 

here, stations with lower LDI scores typically showed low nutrient inputs, lower oxygen 

concentrations, yet showed generally higher levels of biological integrity.  This shows the 

macroinvertebrate assemblages in streams with lower human impact have the ability to 

adapt to naturally lower oxygen conditions.  It is possible for a reduction in nutrient 

loading to reduce overall oxygen concentrations to a more natural state without adversely 

affecting the biological integrity of the stream.  A TMDL for dissolved oxygen does not 

currently account for the biological integrity of the stream and solely relies on nutrient 

load reduction to assume oxygen levels will rebound above the standard for TMDL 
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compliance.  There fore, the current method of assessing dissolved oxygen TMDLs can 

not account for the relationships observed in this study and, in some cases, may not be 

adequate to effectively alleviate an impaired determination. 

 Additionally, a dissolved oxygen TMDL does not account for physical 

characteristics of streams, such as channelization, that can also have significant effects.  

In this study, the streams with the highest LDI scores tend to be channelized with variable 

oxygen concentrations and few discernable correlations, as opposed to the non-

channelized streams which were strongly correlated with oxygen and nutrients.  This 

variability and lack of correlation with nutrient concentrations indicate a TMDL set for a 

channelized stream may not alleviate oxygen impairment.  For these systems, it will be 

important to address the physical as well as chemical components of the stream to 

successfully address impairment.  The physical effects of channelization were not 

included in this study and additional research will help to fully understand the TMDL 

implications of these systems. 

Diel variation (difference between daily high and low oxygen concentration) was 

the measure of dissolved oxygen in this study with the most significant correlations with 

other variables, such as LDI, nutrients, and stream biological integrity.  Diel variation 

was shown to be greatly affected by intensity of human land use overall and in both the 

channelized and non-channelized streams.  This measure of oxygen is presumed to be the 

driving force behind the correlations between oxygen concentration, nutrients, and 

primary production observed, as well.  This research indicates dissolved oxygen range 

may be a more effective and appropriate indicator of the oxygen regime in a stream than 

straight measurements of oxygen concentration. 
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Current methods of data collection for assessing dissolved oxygen regimes for 

TMDL purposes are based on in situ measurements of oxygen concentration, collected 

seasonally and evaluated against Florida’s fresh water quality standard.  A complete 

description of the methodology used, including sample sizes, locations, and assessments 

of impaired status is given in Florida’s Impaired Waters Rule (Chapter 62-303, F.A.C.).  

However, this method is highly variable and subject to unintended human influence as 

well as other factors, such as those described in this study.  TMDL data collection efforts 

for dissolved oxygen are conducted during the daytime hours with no requirement to 

standardize or stagger the time of day the measurements are collected.  An exceedance is 

measured as any oxygen concentration reported below the 5.0 mg/L standard regardless 

of time of day.  Once a predetermined threshold of exceedances is reached over the 

course of a year of monitoring, the waterbody is deemed impaired.  However, oxygen 

measurements vary greatly throughout the day depending on factors such as canopy 

cover, sunlight, algal community and chlorophyll-a concentrations, among others, and 

time of day the measurements are collected can play a significant role in determining the 

impairment status of the water body.   

Figure 11 shows the percentage of all dissolved oxygen values collected at all 

stations during this research effort that were above the 5.0 mg/L standard for each hour of 

the day.  As the figure indicates, only about half of the oxygen measurements collected 

during the evening, nighttime, and morning hours were above the 5.0 mg/L threshold.  

This number climbs to approximately 60 percent for the afternoon hours (~1 to 5 pm), 

indicating an increased likelihood a sample collected during the afternoon in these 

systems will be above the standard.  In contrast, a sample collected at 8 am has slightly 
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less than 50 percent chance to be above the standard.  Since samples collected for TMDL 

purposes are typically collected during normal working hours (8am to 5pm), stations 

sampled during the morning may have an increased likelihood to be measured below the 

standard, and therefore increased chance of acquiring an impaired status.  Also, since 

scheduling for this type of sampling can be logistically challenging, it is likely that 

stations may inadvertently be sampled at the same time of day on many sampling trips.   
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Figure 11. Percent of dissolved oxygen values collected from all stations, over all 
quarters observed above the 5.0 mg/L state water quality standard by hour 
of the day. 

 

As this research indicates, the reference stations, with the lowest rate of human 

influence, typically had low mean oxygen concentrations (< 5.0 mg/L) throughout the 

year.  This is evident when displaying the percentage of dissolved oxygen values above 
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the standard at all six of the reference stations in this study by hour of the day (Figure 

12).  The same temporal pattern is observed with mid afternoon sample collections 

exhibiting the greatest percentage of values above the standard.  However, it is interesting 

to note the percentage of oxygen values observed above the standard at the reference 

stations was only between ~30 and 40 percent throughout the day.  This indicates there is 

increased opportunity to measure oxygen below the standard at the reference stations 

compared to stations with a higher intensity of human influence, regardless of time of 

day.  In fact, two of the reference stations in this study are currently verified as impaired 

for dissolved oxygen by FDEP.  These data show streams in watersheds with increased 

intensity of human land use, compared to the reference stations, have a greater chance to 

be measured above the standard.  As a result of the inherent variability in oxygen 

measurements and timing of sample collections, this research shows direct measurements 

of oxygen concentration may not be adequate to accurately determine the impairment 

status of streams.   

Diel variation was the measure of oxygen in this study showing the most 

significant correlations with intensity of land use, nutrients, chlorophyll-a, and measures 

of biological integrity.  Measuring diel variation, as a measure of the daily shift in oxygen 

values eliminates the potential effect of time of day on determining the impaired status of 

a waterbody.  In addition, diel variation is the only measure of oxygen in this study that 

can potentially account for the physical effects of channelization or the effect of primary 

production and nutrient loading on oxygen values.  Future research should focus on diel 

variation to fully explore the complex nature of the relationships presented here.  The 
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daily range of oxygen values may be a more appropriate measure of oxygen to determine 

the impaired status of flowing systems. 
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Figure 12. Percent of dissolved oxygen values collected from the reference stations, 
over all quarters observed above the 5.0 mg/L state water quality standard 
by hour of the day. 
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CONCLUSIONS 
 

Landscapes dominated by intense human activity are known to have significant 

effects on natural communities (Brown and Vivas 2005).  Degradation of aquatic 

communities is known to occur as a result of urban and agricultural point and non-point 

sources (Tsegaye et al. 2006, Carpenter et al. 1998, USEPA 1996 & 2001).  In Florida, 

substantial monetary funds are spent each year assessing Florida’s aquatic systems to 

determine anthropogenic sources of impairment and design strategies to mitigate those 

impacts.  Oxygen depletion is the most common impairment in Florida streams, with over 

2,000 miles of assessed rivers and streams listed as impaired for low dissolved oxygen 

(FDEP 2008).  This study set out to evaluate dissolved oxygen in streams in west-central 

Florida and provide greater understanding of how the intensity of human land use in the 

surrounding watershed affects dissolved oxygen regimes.  In addition, an index of human 

land use and oxygen was evaluated against a measure of the biological integrity of the 

streams to identify the response of natural communities to altered oxygen regimes as a 

result of increasing human land use. 

 Twenty-six lotic systems throughout west-central Florida (Tampa Bay basin) 

were used in this project and sampled quarterly for one year (2005-2006).  Data 

collection included dissolved oxygen, temperature, nutrients, chlorophyll-a, and benthic 

macroinvertebrate assemblages (Stream Condition Index).  The intensity of human land 

use was evaluated using the Landscape Development Intensity Index (LDI) (Brown and 
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Vivas 2005).  Mean dissolved oxygen concentration, range, deficit, and percentage of 

values below Florida’s fresh water dissolved oxygen standard (5.0 mg/L) were chosen to 

characterize the oxygen regime of each stream.  Data were analyzed for relationships 

using Spearman rank order correlations.   

 Through this effort significant relationships were identified that present valuable 

insight into the effect of human land uses on dissolved oxygen regimes and biological 

communities in Florida streams.  Diel variation in oxygen measurements was 

significantly correlated to the LDI score indicating as land uses become more intense 

with human activity, the range between high and low oxygen measurements increases.  

This is not surprising as other studies have linked increased diel variation in streams to 

anthropogenic sources (Walsh et al. 2005).  This relationship seems to be linked to 

nutrient and chlorophyll-a concentrations in the streams.  The most significant 

relationships were seen with total phosphorus, which is understandable since phosphorus 

is typically the limiting nutrient in freshwater systems (Hecky and Kilham 1988 and 

Mallin et al. 2004).  As the intensity of human land use increases, the concentration of 

phosphorus shows a corresponding increase, as does the concentration of chlorophyll-a in 

the waterbody.  This relationship has the effect of increasing the diel variation in oxygen 

measurements.  The data show this alone has the effect of lowering the biological 

integrity of stream systems in west-central Florida (see Table 13).   

 The most significant conclusions regarding the effect intensity of human land use 

has on dissolved oxygen regimes are apparent when the morphology of the stream 

channel is taken into account.  As previously described, the LDI is a measure of the non-

renewable energy consumed by human activities and is therefore not capable of 



www.manaraa.com

 

 76

addressing the morphology of a stream channel.  However, stream morphology is known 

to affect many factors of water quality including dissolved oxygen (Brilly et al. 2006, 

Meyer et al. 2005, Paul and Meyer 2001, and Walsh et al. 2005).  The stations in this 

study were separated into channelized and non-channelized, then analyzed separately 

with considerable results.  Channelized streams can reasonably be expected to be found 

more frequently in landscapes of more intense human activity, as was the case in this 

study with the majority of channelized systems having higher LDI scores while most of 

the non-channelized streams were associated with lower LDI scores (see Figure 7).   

 The effect of human land use on dissolved oxygen seemed to come from different 

sources in the non-channelized and channelized systems.  In the non-channelized streams 

all measures of dissolved oxygen were significantly correlated with LDI scores indicating 

the highest oxygen concentrations, lowest oxygen deficit, and fewest exceedances of the 

standard were found in streams with the most intense human land use.  In addition, the 

greatest diel variation was also found with higher LDI scores.  This relationship gives the 

overall impression of improving oxygen regimes in areas of increasing intensity of 

human land use as opposed to reference (natural) aquatic communities.  However, the 

same relationship was not observed in the channelized streams, which tend to have the 

highest LDI scores.   

 In the non-channelized systems, phosphorus is the key nutrient driving the 

relationship between dissolved oxygen and human land use.  Phosphorus concentrations 

increased relative to the intensity of land use and, interestingly, measures of dissolved 

oxygen also showed improvement as phosphorus concentrations increased.  This 

relationship seems to contradict the generally accepted notion that increased nutrient 
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levels are associated with oxygen depletion (MacPerson et al. 2007, Mallin et al. 2006, 

NRC 2000, Wang et al. 2003, and Wilcock 1986).  This positive correlation was observed 

during all four quarters of data collection indicating the relationship was not linked to 

seasonal variables.  Analyzing chlorophyll-a concentrations shows an increase in primary 

producers in relation to increasing phosphorus concentrations.  The increase in primary 

production is linked to an increase in diel variation of oxygen measurements and 

subsequent increase in overall dissolved oxygen concentrations.  Platt (1981) has 

presented studies indicating that dark respiration by primary producers consumes less 

oxygen (5 – 50 percent) than is produced by photosynthesis.  This results in a net increase 

in oxygen when diel variation increases.  The complex relationships explained here 

indicate how intense human land use can result in increased dissolved oxygen 

concentrations and fewer exceedances of Florida’s oxygen criteria, as shown in this 

study.  This was only evident in streams with natural sinuosity, and was not observed in 

stream systems that have been channelized.  

 As previously described, the channelized streams in this study were mostly 

concentrated on the higher end of the LDI scale.  The majority of quarterly mean 

dissolved oxygen concentrations were below the 5.0 mg/L criteria set for freshwaters.  

These systems, while typically exhibiting low overall dissolved oxygen regimes relative 

to the standard, did not show the same relationship with nutrients and chlorophyll as the 

non-channelized systems.  It is likely these relationships still exist, however they are 

obscured by other physical factors affecting dissolved oxygen.  Channelized streams tend 

to include straight, incised banks, greater depth, low velocity, and may include other 

structures such as impoundments that can have significant effects on dissolved oxygen.  
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These, and other physical characteristics of channelization were not included in this study 

so their impact on the dissolved oxygen regimes of the systems could not be examined.  

However, the results seem to indicate that channelization has a greater effect on dissolved 

oxygen regimes than the variables included in this study.  Additional research in this area 

could help to identify which variables have the greatest effect as well as understand the 

relationships between the variables. 

 Human land use affects dissolved oxygen regimes in streams to varying degrees 

dependent upon the physical characteristics of the stream itself.  In west-central Florida 

the reference streams used in this research exhibited some of the lowest overall oxygen 

regimes with the greatest number of exceedances of Florida’s fresh water standard.  

These streams tend to exhibit natural sinuosity with the least amount of human influence.  

As human influence increases in the watershed surrounding non-channelized streams, 

increased nutrient (phosphorus) inputs seem to increase the overall oxygen regime 

through increased primary production.  As human influence continues to increase and 

land uses surrounding the streams become more dominated by high intensity agriculture, 

residential, commercial, and industrial uses, lotic systems are more likely to be 

channelized.  This physical alteration of the stream system takes over as the dominant 

force affecting dissolved oxygen resulting in lower overall regimes.   

 Altered dissolved oxygen regimes and intense human land use can have 

significant effects on the biological integrity of a stream.  Fore (2004) showed how 

increasing LDI can result in lowered biological integrity using the Stream Condition 

Index (SCI).  The same relationship was observed in this research.  In addition, the SCI 

showed a strong correlation with dissolved oxygen.  Benthic macroinvertebrate 
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community structure increased with increasing mean oxygen concentrations and 

decreased with increasing diel variation.  Although the reference stations typically 

exhibited lower oxygen concentrations (see Figure 7), they also showed more stable diel 

variation (see Figure 4).  Increasing intensity of human land use results in increased diel 

variation of oxygen measurements and corresponds to a decrease in SCI score.  Increased 

diel variation was linked with a loss of sensitive taxa, and an increase in the percent of 

tolerant taxa as well as an increase in the dominant taxon (reduced diversity).  This was 

only observed when viewing all stations together and was not evident when separating 

the stations into channelized and non-channelized systems.  In this research, the diel shift 

in oxygen measurements showed the greatest effect on the biological integrity of the 

streams.  Seasonal variation was observed in the relationships between oxygen, land use, 

and SCI scores as well.  Biological integrity showed strong correlation with measures of 

oxygen during the summer, but was not correlated with the LDI scores.  In contrast, the 

winter SCI scores showed a negative correlation with LDI, and did not correlate with 

measures of dissolved oxygen.  This interesting dichotomy indicates that altered oxygen 

regimes as a result of intense human activity in a watershed may not be the most effective 

indicator of stream biological integrity.  However, the data indicates oxygen does play a 

significant role, and these effects should be accounted for when assessing the overall 

health of the lotic system.  

 The results of this research effort may have significant impacts for Florida’s 

TMDL program and for methodologies used to assess the impairment status of stream 

and river systems throughout the state.  Current TMDL evaluations do not account for the 

relationships observed in this study and instead rely solely on nutrient reduction to 
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alleviate oxygen stress.  The data presented here indicate a simple reduction in nutrient 

inputs may have no affect or may actually decrease overall oxygen concentrations giving 

the appearance of a failed TMDL for dissolved oxygen.  In addition, current TMDL data 

collection methodologies are based on in situ measurements of oxygen concentration and 

are subject to unintended bias from the effects of photoperiod as previously described.  

As a result of the inherent variability in oxygen measurements and timing of sample 

collections, this research shows in situ oxygen concentration measurements may not be 

adequate to accurately determine the impairment status of streams and rivers.  Diel 

variation more accurately reflects the relationship between oxygen and the intensity of 

human land use and antecedent variables including nutrients and primary production.  

Therefore, diel variation may be a more accurate predictor of oxygen impairment and 

TMDL efforts should focus on this measure of oxygen to determine impairment status. 

 Additional research will be necessary to fully explore and understand the 

relationships presented in this study.  The relationship between oxygen, intensity of 

human land use, and nutrients (phosphorus) observed in this research seems to contradict 

previous studies; therefore, additional research should be conducted to determine if the 

same relationship is observed in flowing systems on a state-wide scale or in other types 

of waterbodies.  In addition, it will be important to incorporate the effect of stream 

morphology on the oxygen regime of a flowing system to be able to fully characterize the 

impact of human land uses.  Based on the results observed in this study, future research 

should focus on diel variation as a more appropriate indicator of oxygen regimes in lotic 

systems.  It will also be important to include biological integrity in any assessment of 

impairment to determine when a system has been altered as a result of human activity. 
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 Dissolved oxygen is widely considered a general indicator of aquatic health.  

Research presented here from lotic systems in west-central Florida indicates the intensity 

of human land use has a significant effect on dissolved oxygen regimes.  Chemical as 

well as physical alterations in watersheds as a result of increased human activity have 

differing effects on dissolved oxygen, some which may actually lead to increased overall 

oxygen regimes.  These complex relationships must be fully explored and integrated into 

regulatory frameworks to accurately delineate between impairment as a result of human 

influence and natural variability for which an impaired determination is not necessary.  

The relationships presented here may also be useful, in conjunction with further research 

and analysis, when attempting to revise the dissolved oxygen state water quality standard 

to allow for greater protection of Florida’s most valuable resource. 
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Appendix A 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total Area 
(m2) 

HIL-1 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 119134.21 

HIL-1 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 9912.87 

HIL-1 Residential, High Density 1000 1300 1300 8.66 34268.28 

HIL-1 Commercial and Services 1000 1400 1400 8.00 306841.24 

HIL-1 Institutional 1000 1700 1700 8.07 1905.64 

HIL-1 Pastures and Fields 2000 2100 2100 3.51 252280.40 

HIL-1 Feeding Operations 2000 2300 2300 5.15 46963.03 

HIL-1 Other Open Lands 2000 2600 2600 2.06 455459.88 

HIL-1 Shrub and Brushland 3000 3200 3200 2.06 12.34 

HIL-1 Mixed Rangeland 3000 3300 3300 2.06 12483.40 

HIL-1 Hardwood - Conifer Mixed 4000 4300 4340 1.00 119690.80 

HIL-1 Lakes 5000 5200 5200 1.00 141399.70 

HIL-1 Reservoirs 5000 5300 5300 4.09 57867.97 

HIL-1 Wetland Hardwood Forests 6000 6100 6100 1.00 7905.01 

HIL-1 Freshwater Marshes 6000 6400 6410 1.00 45386.54 

HIL-1 Emergent Aquatic Vegetation 6000 6400 6440 1.00 38740.59 

HIL-1 Transportation 8000 8100 8100 7.81 45207.50 

HIL-2 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 175260.46 

HIL-2 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 79842.27 

HIL-2 Residential, High Density 1000 1300 1300 8.66 1390843.78 

HIL-2 Commercial and Services 1000 1400 1400 8.00 9826.64 

HIL-2 Industrial 1000 1500 1500 8.32 3917.11 

HIL-2 Institutional 1000 1700 1700 8.07 5743.99 

HIL-2 Recreational 1000 1800 1800 4.09 282488.55 

HIL-2 Other Open Land 1000 1900 1940 1.85 18739.88 

HIL-2 Pastures and Fields 2000 2100 2100 3.51 52430.53 

HIL-2 Specialty Farms 2000 2500 2500 4.06 3962.25 

HIL-2 Other Open Lands 2000 2600 2600 2.06 111283.46 

HIL-2 Hardwood - Conifer Mixed 4000 4300 4340 1.00 73407.39 

HIL-2 Streams and Waterways 5000 5100 5100 1.00 28726.40 

HIL-2 Lakes 5000 5200 5200 1.00 143360.67 

HIL-2 Lakes 5000 5200 5200 1.00 1892.69 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

HIL-2 Reservoirs 5000 5300 5300 4.09 153070.47 

HIL-2 Wetland Hardwood Forests 6000 6100 6100 1.00 63992.046 

HIL-2 Bottomland Hardwood Forest 6000 6100 6150 1.00 667547.82 

HIL-2 Cypress 6000 6200 6210 1.00 138286.75 

HIL-2 Freshwater Marshes 6000 6400 6410 1.00 34269.853 

HIL-2 Wet Prairies 6000 6400 6430 1.00 14978.685 

HIL-2 Emergent Aquatic Vegetation 6000 6400 6440 1.00 16987.59 

HIL-2 Transportation 8000 8100 8100 7.81 20216.169 

HIL-2 Utilities 8000 8300 8300 8.32 56912.633 

HIL-3 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 78930.407 

HIL-3 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 890656.66 

HIL-3 Residential, High Density 1000 1300 1300 8.66 732371.61 

HIL-3 Commercial and Services 1000 1400 1400 8.00 72601.006 

HIL-3 Institutional 1000 1700 1700 8.07 15014.416 

HIL-3 Recreational 1000 1800 1800 4.09 13160.573 

HIL-3 Tree Crops 2000 2200 2200 4.06 21946.072 

HIL-3 Nurseries and Vineyards 2000 2400 2400 4.06 27378.881 

HIL-3 Other Open Lands 2000 2600 2600 2.06 28396.57 

HIL-3 Hardwood - Conifer Mixed 4000 4300 4340 1.00 23881.708 

HIL-3 Lakes 5000 5200 5200 1.00 1259338.1 

HIL-3 Reservoirs 5000 5300 5300 4.09 92499.327 

HIL-3 Wetland Hardwood Forests 6000 6100 6100 1.00 126337.74 

HIL-3 Cypress 6000 6200 6210 1.00 23355.02 

HIL-3 Freshwater Marshes 6000 6400 6410 1.00 25260.713 

HIL-3 Wet Prairies 6000 6400 6430 1.00 8378.1596 

HIL-3 Emergent Aquatic Vegetation 6000 6400 6440 1.00 156937.75 

HIL-3 Transportation 8000 8100 8100 7.81 33736.33 

HIL-3 Utilities 8000 8300 8300 8.32 23196.836 

HIL-4 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 11822.737 

HIL-4 Residential, High Density 1000 1300 1300 8.66 1613098.1 

HIL-4 Commercial and Services 1000 1400 1400 8.00 408590.61 

HIL-4 Industrial 1000 1500 1500 8.32 254016.34 

HIL-4 Institutional 1000 1700 1700 8.07 178451.84 

HIL-4 Recreational 1000 1800 1800 4.09 318860.12 

HIL-4 Other Open Lands 2000 2600 2600 2.06 212258.23 

HIL-4 Hardwood - Conifer Mixed 4000 4300 4340 1.00 16735.22 

HIL-4 Streams and Waterways 5000 5100 5100 1.00 56692.101 

HIL-4 Lakes 5000 5200 5200 1.00 3955.8125 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

HIL-4 Reservoirs 5000 5300 5300 4.09 70194.454 

HIL-4 Wetland Hardwood Forests 6000 6100 6100 1.00 111413.08 

HIL-4 Mixed Wetland Hardwoods - Mixed Shrubs 6000 6100 6172 1.00 13594.419 

HIL-4 Freshwater Marshes 6000 6400 6410 1.00 13056.659 

HIL-4 Wet Prairies 6000 6400 6430 1.00 4311.2752 

HIL-4 Emergent Aquatic Vegetation 6000 6400 6440 1.00 6696.6415 

HIL-4 Disturbed Lands 7000 7400 7400 4.09 322.21467 

HIL-4 Transportation 8000 8100 8100 7.81 141969.9 

HIL-4 Utilities 8000 8300 8300 8.32 13532.158 

HIL-5 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 394098.55 

HIL-5 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 316616.89 

HIL-5 Residential, High Density 1000 1300 1300 8.66 518076.75 

HIL-5 Commercial and Services 1000 1400 1400 8.00 28859.891 

HIL-5 Industrial 1000 1500 1500 8.32 25336.661 

HIL-5 Extractive 1000 1600 1600 8.32 996969.39 

HIL-5 Recreational 1000 1800 1800 4.09 327157.92 

HIL-5 Other Open Land 1000 1900 1940 1.85 92877.063 

HIL-5 Pastures and Fields 2000 2100 2100 3.51 2195553.5 

HIL-5 Tree Crops 2000 2200 2200 4.06 11681.442 

HIL-5 Specialty Farms 2000 2500 2500 4.06 196848.24 

HIL-5 Other Open Lands 2000 2600 2600 2.06 208834.97 

HIL-5 Shrub and Brushland 3000 3200 3200 2.06 895488.83 

HIL-5 Upland Coniferous Forests 4000 4100 4100 1.00 36183.116 

HIL-5 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 443756.87 

HIL-5 Hardwood - Conifer Mixed 4000 4300 4340 1.00 1090666.5 

HIL-5 Tree Plantations 4000 4400 4400 1.58 242459.21 

HIL-5 Streams and Waterways 5000 5100 5100 1.00 31393.902 

HIL-5 Lakes 5000 5200 5200 1.00 1548.3869 

HIL-5 Reservoirs 5000 5300 5300 4.09 92748.65 

HIL-5 Wetland Hardwood Forests 6000 6100 6100 1.00 125288.56 

HIL-5 Bottomland Hardwood Forest 6000 6100 6150 1.00 5971996.8 

HIL-5 Wetland Coniferous Forests 6000 6200 6200 1.00 343464.99 

HIL-5 Cypress 6000 6200 6210 1.00 690591.84 

HIL-5 Freshwater Marshes 6000 6400 6410 1.00 517490.07 

HIL-5 Wet Prairies 6000 6400 6430 1.00 47648.132 

HIL-5 Emergent Aquatic Vegetation 6000 6400 6440 1.00 27356.268 

HIL-5 Transportation 8000 8100 8100 7.81 89907.839 

HIL-6 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 207101.41 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

HIL-6 Commercial and Services 1000 1400 1400 8.00 7108.4487 

HIL-6 Recreational 1000 1800 1800 4.09 319.95671 

HIL-6 Pastures and Fields 2000 2100 2100 3.51 135231.46 

HIL-6 Hardwood - Conifer Mixed 4000 4300 4340 1.00 48884.646 

HIL-6 Reservoirs 5000 5300 5300 4.09 5773.0507 

HIL-6 Wetland Hardwood Forests 6000 6100 6100 1.00 4820.7962 

HIL-6 Bottomland Hardwood Forest 6000 6100 6150 1.00 87996.433 

HIL-6 Cypress 6000 6200 6210 1.00 14537.081 

HIL-6 Freshwater Marshes 6000 6400 6410 1.00 18653.427 

HIL-6 Wet Prairies 6000 6400 6430 1.00 3802.0102 

HIL-6 Emergent Aquatic Vegetation 6000 6400 6440 1.00 704.04688 

HIL-7 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 94573.227 

HIL-7 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 133495.37 

HIL-7 Residential, High Density 1000 1300 1300 8.66 671131.69 

HIL-7 Commercial and Services 1000 1400 1400 8.00 247569.83 

HIL-7 Institutional 1000 1700 1700 8.07 4098.5562 

HIL-7 Recreational 1000 1800 1800 4.09 13496.567 

HIL-7 Other Open Land 1000 1900 1940 1.85 11759.91 

HIL-7 Pastures and Fields 2000 2100 2100 3.51 407192.06 

HIL-7 Specialty Farms 2000 2500 2500 4.06 227206.38 

HIL-7 Other Open Lands 2000 2600 2600 2.06 465123.46 

HIL-7 Shrub and Brushland 3000 3200 3200 2.06 479097.92 

HIL-7 Upland Coniferous Forests 4000 4100 4100 1.00 23526.337 

HIL-7 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 179134.67 

HIL-7 Hardwood - Conifer Mixed 4000 4300 4340 1.00 126167.26 

HIL-7 Streams and Waterways 5000 5100 5100 1.00 14013.474 

HIL-7 Reservoirs 5000 5300 5300 4.09 110637.28 

HIL-7 Wetland Coniferous Forests 6000 6200 6200 1.00 12162.855 

HIL-7 Freshwater Marshes 6000 6400 6410 1.00 34670.047 

HIL-7 Wet Prairies 6000 6400 6430 1.00 56953.816 

HIL-7 Disturbed Lands 7000 7400 7400 4.09 18304.171 

HIL-7 Transportation 8000 8100 8100 7.81 159869.79 

HIL-7 Utilities 8000 8300 8300 8.32 218514.66 

HIL-8 Shrub and Brushland 3000 3200 3200 2.06 34055.778 

HIL-8 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 16510.836 

HIL-8 Hardwood - Conifer Mixed 4000 4300 4340 1.00 34851.584 

HIL-8 Wet Prairies 6000 6400 6430 1.00 10741.891 

HIL-9 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 81838.278 

HIL-9 Extractive 1000 1600 1600 8.32 579870.8 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

HIL-9 Other Open Land 1000 1900 1940 1.85 26114.404 

HIL-9 Pastures and Fields 2000 2100 2100 3.51 877142.53 

HIL-9 Row Crops 2000 2100 2140 4.63 313127.74 

HIL-9 Nurseries and Vineyards 2000 2400 2400 4.06 5860.5774 

HIL-9 Tropical Fish Farms 2000 2500 2550 5.15 36136.794 

HIL-9 Shrub and Brushland 3000 3200 3200 2.06 123160.77 

HIL-9 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 180621.33 

HIL-9 Hardwood - Conifer Mixed 4000 4300 4340 1.00 225452.7 

HIL-9 Reservoirs 5000 5300 5300 4.09 110597.32 

HIL-9 Bottomland Hardwood Forest 6000 6100 6150 1.00 1838776.7 

HIL-9 Freshwater Marshes 6000 6400 6410 1.00 83145.647 

HIL-9 Wet Prairies 6000 6400 6430 1.00 2657.2139 

HIL-9 Emergent Aquatic Vegetation 6000 6400 6440 1.00 4977.9042 

HIL-10 Extractive 1000 1600 1600 8.32 31205.763 

HIL-10 Pastures and Fields 2000 2100 2100 3.51 19.076471 

HIL-10 Row Crops 2000 2100 2140 4.63 300317.51 

HIL-10 Tropical Fish Farms 2000 2500 2550 5.15 36136.877 

HIL-10 Shrub and Brushland 3000 3200 3200 2.06 3169.5782 

HIL-10 Hardwood - Conifer Mixed 4000 4300 4340 1.00 93494.231 

HIL-10 Reservoirs 5000 5300 5300 4.09 1645.9179 

HIL-10 Bottomland Hardwood Forest 6000 6100 6150 1.00 405017.15 

HIL-10 Freshwater Marshes 6000 6400 6410 1.00 4984.1752 

HIL-10 Emergent Aquatic Vegetation 6000 6400 6440 1.00 1623.0436 

HIL-11 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 1575.1535 

HIL-11 Other Open Land 1000 1900 1940 1.85 14527.211 

HIL-11 Pastures and Fields 2000 2100 2100 3.51 3714970.5 

HIL-11 Row Crops 2000 2100 2140 4.63 766952.6 

HIL-11 Tree Crops 2000 2200 2200 4.06 970982.66 

HIL-11 Tropical Fish Farms 2000 2500 2550 5.15 4167.1185 

HIL-11 Herbaceous 3000 3100 3100 2.06 32671.283 

HIL-11 Shrub and Brushland 3000 3200 3200 2.06 1590687.5 

HIL-11 Mixed Rangeland 3000 3300 3300 2.06 65657.966 

HIL-11 Upland Coniferous Forests 4000 4100 4100 1.00 13195.292 

HIL-11 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 890633.11 

HIL-11 Upland Hardwood Forests 4000 4200 4200 1.00 7233.4841 

HIL-11 Hardwood - Conifer Mixed 4000 4300 4340 1.00 931002.68 

HIL-11 Reservoirs 5000 5300 5300 4.09 28271.351 

HIL-11 Bottomland Hardwood Forest 6000 6100 6150 1.00 6410783.4 

HIL-11 Wetland Coniferous Forests 6000 6200 6200 1.00 18784.265 

HIL-11 Cypress 6000 6200 6210 1.00 88718.112 

HIL-11 Freshwater Marshes 6000 6400 6410 1.00 226309.52 

HIL-11 Wet Prairies 6000 6400 6430 1.00 169213.24 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

HIL-11 Emergent Aquatic Vegetation 6000 6400 6440 1.00 8528.3823 

HIL-11 Transportation 8000 8100 8100 7.81 8849.5754 

MAN-1 Pastures and Fields 2000 2100 2100 3.51 6596.1826 

MAN-1 Tree Crops 2000 2200 2200 4.06 13100.616 

MAN-1 Shrub and Brushland 3000 3200 3200 2.06 449079.58 

MAN-1 Lakes 5000 5200 5200 1.00 1298.9011 

MAN-1 Reservoirs 5000 5300 5300 4.09 853.8375 

MAN-1 Bottomland Hardwood Forest 6000 6100 6150 1.00 13279.696 

MAN-1 Freshwater Marshes 6000 6400 6410 1.00 555069.66 

MAN-1 Wet Prairies 6000 6400 6430 1.00 223147.92 

MAN-2 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 2057.04 

MAN-2 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 33269.686 

MAN-2 Residential, High Density 1000 1300 1300 8.66 409293.85 

MAN-2 Commercial and Services 1000 1400 1400 8.00 314301.32 

MAN-2 Recreational 1000 1800 1800 4.09 89725.468 

MAN-2 Other Open Lands 2000 2600 2600 2.06 3776.6216 

MAN-2 Streams and Waterways 5000 5100 5100 1.00 5125.6063 

MAN-2 Reservoirs 5000 5300 5300 4.09 3854.0894 

MAN-2 Bottomland Hardwood Forest 6000 6100 6150 1.00 17069.604 

MAN-2 Transportation 8000 8100 8100 7.81 16443.235 

MAN-3 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 208024.74 

MAN-3 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 8927.0862 

MAN-3 Residential, High Density 1000 1300 1300 8.66 22875.597 

MAN-3 Extractive 1000 1600 1600 8.32 275699.12 

MAN-3 Recreational 1000 1800 1800 4.09 124420.01 

MAN-3 Other Open Land 1000 1900 1940 1.85 12742.744 

MAN-3 Pastures and Fields 2000 2100 2100 3.51 793419 

MAN-3 Row Crops 2000 2100 2140 4.63 446156.48 

MAN-3 Feeding Operations 2000 2300 2300 5.15 176251.43 

MAN-3 Other Open Lands 2000 2600 2600 2.06 99171.916 

MAN-3 Shrub and Brushland 3000 3200 3200 2.06 199978.84 

MAN-3 Upland Coniferous Forests 4000 4100 4100 1.00 10444.616 

MAN-3 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 286928.95 

MAN-3 Hardwood - Conifer Mixed 4000 4300 4340 1.00 244461.95 

MAN-3 Reservoirs 5000 5300 5300 4.09 37164.572 

MAN-3 Bottomland Hardwood Forest 6000 6100 6150 1.00 320116.97 

MAN-3 Cypress 6000 6200 6210 1.00 10049.837 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

MAN-3 Freshwater Marshes 6000 6400 6410 1.00 334871.06 

MAN-3 Wet Prairies 6000 6400 6430 1.00 50020.913 

MAN-3 Emergent Aquatic Vegetation 6000 6400 6440 1.00 773.96845 

MAN-3 Transportation 8000 8100 8100 7.81 69365.49 

MAN-3 Utilities 8000 8300 8300 8.32 24347.971 

PAS-1 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 18873.929 

PAS-1 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 72040.837 

PAS-1 Residential, High Density 1000 1300 1300 8.66 263783.53 

PAS-1 Commercial and Services 1000 1400 1400 8.00 15364.252 

PAS-1 Recreational 1000 1800 1800 4.09 153240.89 

PAS-1 Other Open Land 1000 1900 1940 1.85 33114.96 

PAS-1 Pastures and Fields 2000 2100 2100 3.51 404273.09 

PAS-1 Other Open Lands 2000 2600 2600 2.06 75620.87 

PAS-1 Shrub and Brushland 3000 3200 3200 2.06 11525.723 

PAS-1 Upland Coniferous Forests 4000 4100 4100 1.00 693.17876 

PAS-1 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 664618.68 

PAS-1 Reservoirs 5000 5300 5300 4.09 19702.82 

PAS-1 Bottomland Hardwood Forest 6000 6100 6150 1.00 2166514.8 

PAS-1 Wetland Coniferous Forests 6000 6200 6200 1.00 6177.9626 

PAS-1 Cypress 6000 6200 6210 1.00 26375.67 

PAS-1 Freshwater Marshes 6000 6400 6410 1.00 36659.585 

PAS-1 Wet Prairies 6000 6400 6430 1.00 13512.952 

PAS-2 Pastures and Fields 2000 2100 2100 3.51 16502.045 

PAS-2 Hardwood - Conifer Mixed 4000 4300 4340 1.00 6055.2146 

PAS-2 Streams and Waterways 5000 5100 5100 1.00 7755.5175 

PAS-2 Bottomland Hardwood Forest 6000 6100 6150 1.00 17001.945 

PAS-3 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 66763.983 

PAS-3 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 39658.338 

PAS-3 Commercial and Services 1000 1400 1400 8.00 55628.623 

PAS-3 Recreational 1000 1800 1800 4.09 1746.6295 

PAS-3 Other Open Land 1000 1900 1940 1.85 26039.509 

PAS-3 Pastures and Fields 2000 2100 2100 3.51 459622.14 

PAS-3 Shrub and Brushland 3000 3200 3200 2.06 75257.372 

PAS-3 Upland Coniferous Forests 4000 4100 4100 1.00 19630.382 

PAS-3 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 253054.24 

PAS-3 Pine - Mesic Oak 4000 4100 4140 1.00 69365.055 

PAS-3 Hardwood - Conifer Mixed 4000 4300 4340 1.00 296771.37 

PAS-3 Tree Plantations 4000 4400 4400 1.58 235.36299 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

PAS-3 Streams and Waterways 5000 5100 5100 1.00 30256.273 

PAS-3 Lakes 5000 5200 5200 1.00 237751.58 

PAS-3 Wetland Hardwood Forests 6000 6100 6100 1.00 93775.468 

PAS-3 Bottomland Hardwood Forest 6000 6100 6150 1.00 797738.67 

PAS-3 Wetland Coniferous Forests 6000 6200 6200 1.00 4843.1828 

PAS-3 Cypress 6000 6200 6210 1.00 314267.48 

PAS-3 Freshwater Marshes 6000 6400 6410 1.00 472672.44 

PAS-3 Wet Prairies 6000 6400 6430 1.00 1336588.1 

PAS-3 Emergent Aquatic Vegetation 6000 6400 6440 1.00 756448.75 

PAS-4 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 18253.189 

PAS-4 Residential, High Density 1000 1300 1300 8.66 41817.535 

PAS-4 Recreational 1000 1800 1800 4.09 23269.552 

PAS-4 Other Open Lands 2000 2600 2600 2.06 4791.2946 

PAS-4 Upland Coniferous Forests 4000 4100 4100 1.00 8298.8856 

PAS-4 Hardwood - Conifer Mixed 4000 4300 4340 1.00 141706.15 

PAS-4 Tree Plantations 4000 4400 4400 1.58 29701.799 

PAS-4 Reservoirs 5000 5300 5300 4.09 2974.5896 

PAS-4 Bottomland Hardwood Forest 6000 6100 6150 1.00 344309.86 

PAS-4 Freshwater Marshes 6000 6400 6410 1.00 2312.3331 

PAS-4 Wet Prairies 6000 6400 6430 1.00 2039.7336 

PAS-5 Residential, High Density 1000 1300 1300 8.66 259787.58 

PAS-5 Recreational 1000 1800 1800 4.09 153240.89 

PAS-5 Other Open Land 1000 1900 1940 1.85 32971.232 

PAS-5 Pastures and Fields 2000 2100 2100 3.51 184555.31 

PAS-5 Other Open Lands 2000 2600 2600 2.06 38377.723 

PAS-5 Shrub and Brushland 3000 3200 3200 2.06 100112.79 

PAS-5 Upland Coniferous Forests 4000 4100 4100 1.00 693.17876 

PAS-5 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 845758.19 

PAS-5 Reservoirs 5000 5300 5300 4.09 13436.965 

PAS-5 Bottomland Hardwood Forest 6000 6100 6150 1.00 2445514.3 

PAS-5 Wetland Coniferous Forests 6000 6200 6200 1.00 6177.9626 

PAS-5 Cypress 6000 6200 6210 1.00 314204.26 

PAS-5 Freshwater Marshes 6000 6400 6410 1.00 34803.354 

PAS-5 Wet Prairies 6000 6400 6430 1.00 5187.3811 

PIN-1 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 2984.2955 

PIN-1 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 111640.54 

PIN-1 Residential, High Density 1000 1300 1300 8.66 622904.18 

PIN-1 Commercial and Services 1000 1400 1400 8.00 317304.3 

PIN-1 Industrial 1000 1500 1500 8.32 58228.677 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

PIN-1 Institutional 1000 1700 1700 8.07 20181.514 

PIN-1 Recreational 1000 1800 1800 4.09 485.15483 

PIN-1 Upland Coniferous Forests 4000 4100 4100 1.00 43970.217 

PIN-1 Hardwood - Conifer Mixed 4000 4300 4340 1.00 32863.48 

PIN-1 Lakes 5000 5200 5200 1.00 17155.079 

PIN-1 Reservoirs 5000 5300 5300 4.09 18289.497 

PIN-1 Bottomland Hardwood Forest 6000 6100 6150 1.00 25597.411 

PIN-1 Freshwater Marshes 6000 6400 6410 1.00 11434.21 

PIN-1 Transportation 8000 8100 8100 7.81 49695.954 

PIN-1 Utilities 8000 8300 8300 8.32 45744.383 

PIN-2 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 29983.96 

PIN-2 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 29851.893 

PIN-2 Residential, High Density 1000 1300 1300 8.66 341793.57 

PIN-2 Commercial and Services 1000 1400 1400 8.00 138418.48 

PIN-2 Industrial 1000 1500 1500 8.32 34009.784 

PIN-2 Other Open Lands 2000 2600 2600 2.06 67809.102 

PIN-2 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 59517.248 

PIN-2 Hardwood - Conifer Mixed 4000 4300 4340 1.00 19015.797 

PIN-2 Reservoirs 5000 5300 5300 4.09 26631.561 

PIN-2 Wetland Hardwood Forests 6000 6100 6100 1.00 3445.4238 

PIN-2 Bottomland Hardwood Forest 6000 6100 6150 1.00 20387.758 

PIN-2 Freshwater Marshes 6000 6400 6410 1.00 1245.8583 

PIN-2 Transportation 8000 8100 8100 7.81 55752.133 

PIN-2 Utilities 8000 8300 8300 8.32 20974.459 

PIN-3 Residential, High Density 1000 1300 1300 8.66 109469.69 

PIN-3 Commercial and Services 1000 1400 1400 8.00 11925.313 

PIN-3 Reservoirs 5000 5300 5300 4.09 5102.2832 

POL-1 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 51932.521 

POL-1 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 579818.65 

POL-1 Residential, High Density 1000 1300 1300 8.66 541346.1 

POL-1 Commercial and Services 1000 1400 1400 8.00 66836.434 

POL-1 Industrial 1000 1500 1500 8.32 151275.17 

POL-1 Extractive 1000 1600 1600 8.32 317481.02 

POL-1 Institutional 1000 1700 1700 8.07 40547.45 

POL-1 Recreational 1000 1800 1800 4.09 341007.89 

POL-1 Pastures and Fields 2000 2100 2100 3.51 519752.01 

POL-1 Other Open Lands 2000 2600 2600 2.06 313034.73 

POL-1 Shrub and Brushland 3000 3200 3200 2.06 2448.6147 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

POL-1 Mixed Rangeland 3000 3300 3300 2.06 619.22005 

POL-1 Hardwood - Conifer Mixed 4000 4300 4340 1.00 308837.32 

POL-1 Streams and Waterways 5000 5100 5100 1.00 17039.833 

POL-1 Lakes 5000 5200 5200 1.00 326422.64 

POL-1 Reservoirs 5000 5300 5300 4.09 76788.566 

POL-1 Wetland Hardwood Forests 6000 6100 6100 1.00 265339.35 

POL-1 Bottomland Hardwood Forest 6000 6100 6150 1.00 202512.87 

POL-1 Freshwater Marshes 6000 6400 6410 1.00 49374.517 

POL-1 Wet Prairies 6000 6400 6430 1.00 2907.9548 

POL-1 Emergent Aquatic Vegetation 6000 6400 6440 1.00 31683.677 

POL-1 Transportation 8000 8100 8100 7.81 237384.47 

POL-1 Utilities 8000 8300 8300 8.32 65371.213 

POL-2 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 138749.49 

POL-2 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 1102147.4 

POL-2 Residential, High Density 1000 1300 1300 8.66 314461.66 

POL-2 Commercial and Services 1000 1400 1400 8.00 134003.82 

POL-2 Extractive 1000 1600 1600 8.32 981998.43 

POL-2 Institutional 1000 1700 1700 8.07 139851.48 

POL-2 Recreational 1000 1800 1800 4.09 432495.44 

POL-2 Pastures and Fields 2000 2100 2100 3.51 201706.78 

POL-2 Lakes 5000 5200 5200 1.00 1638227 

POL-2 Reservoirs 5000 5300 5300 4.09 763754.78 

POL-2 Bottomland Hardwood Forest 6000 6100 6150 1.00 6831.5392 

POL-2 Freshwater Marshes 6000 6400 6410 1.00 7746.6639 

POL-2 Emergent Aquatic Vegetation 6000 6400 6440 1.00 26130.051 

POL-2 Utilities 8000 8300 8300 8.32 82616.927 

POL-3 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 6142.5118 

POL-3 Other Open Land 1000 1900 1940 1.85 6965.5704 

POL-3 Tree Crops 2000 2200 2200 4.06 271147.03 

POL-3 Shrub and Brushland 3000 3200 3200 2.06 111807.27 

POL-3 Upland Coniferous Forests 4000 4100 4100 1.00 2439.47 

POL-3 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 639745.37 

POL-3 Hardwood - Conifer Mixed 4000 4300 4340 1.00 135699.69 

POL-3 Lakes 5000 5200 5200 1.00 1581619.6 

POL-3 Bay Swamps 6000 6100 6110 1.00 1873.253 

POL-3 Bottomland Hardwood Forest 6000 6100 6150 1.00 3134160.9 

POL-3 Freshwater Marshes 6000 6400 6410 1.00 15775.901 

POL-3 Wet Prairies 6000 6400 6430 1.00 17348.341 
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Appendix A (Continued) 

Site Land Use 
FLUCC 

Code 
Level I 

FLUCC 
Code 

Level II 

FLUUCS 
Code 

Land Use 
Coeff. 

Total 
Area (m2) 

POL-3 Emergent Aquatic Vegetation 6000 6400 6440 1.00 2946.8974 

POL-4 Residential, Low Density <Less than two 
dwelling units per acre> 1000 1100 1100 6.79 169487.3 

POL-4 Residential, Medium Density <Two - five 
dwelling units per acre> 1000 1200 1200 7.59 890858.33 

POL-4 Residential, High Density 1000 1300 1300 8.66 23395.488 

POL-4 Commercial and Services 1000 1400 1400 8.00 8895.8554 

POL-4 Industrial 1000 1500 1500 8.32 44833.447 

POL-4 Institutional 1000 1700 1700 8.07 6068.2736 

POL-4 Recreational 1000 1800 1800 4.09 58636.902 

POL-4 Other Open Land 1000 1900 1940 1.85 50836.399 

POL-4 Pastures and Fields 2000 2100 2100 3.51 834192.24 

POL-4 Unimproved Pastures 2000 2100 2120 2.06 1139.5766 

POL-4 Tree Crops 2000 2200 2200 4.06 662997.28 

POL-4 Citrus Groves 2000 2200 2210 4.06 41961.949 

POL-4 Dairies 2000 2500 2520 5.15 82226.457 

POL-4 Other Open Lands 2000 2600 2600 2.06 10649.299 

POL-4 Shrub and Brushland 3000 3200 3200 2.06 481196.5 

POL-4 Other Shrubs and Brush 3000 3200 3290 2.06 3493.7209 

POL-4 Pine Flatwoods or Mesic Flatwoods 4000 4100 4110 1.00 623766.24 

POL-4 Hardwood - Conifer Mixed 4000 4300 4340 1.00 17468.857 

POL-4 Hardwood - Conifer Mixed 4000 4300 4340 1.00 309811.33 

POL-4 Lakes 5000 5200 5200 1.00 19884528 

POL-4 Reservoirs 5000 5300 5300 4.09 39310.909 

POL-4 Bay Swamps 6000 6100 6110 1.00 68730.221 

POL-4 Bottomland Hardwood Forest 6000 6100 6150 1.00 3872203.5 

POL-4 Mixed Wetland Hardwoods - Mixed Shrubs 6000 6100 6172 1.00 1309.1105 

POL-4 Freshwater Marshes 6000 6400 6410 1.00 1390218 

POL-4 Wet Prairies 6000 6400 6430 1.00 166761.57 

POL-4 Emergent Aquatic Vegetation 6000 6400 6440 1.00 145910.79 

POL-4 Utilities 8000 8300 8300 8.32 8352.4423 
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